Skip to main content

Flying Ad-Hoc Network for Emergency Based on IEEE 802.11p Multichannel MAC Protocol

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks (DCCN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11965))

Abstract

Flying ad-hoc networks are widely used in various fields, especially in searching and rescuing of people by using unmanned aerial systems, which includes one or more mobile base stations and mission-oriented UAVs. Thanks to the mobility of UAVs, we can create a communication of Flying Network for Emergencies to support quickly and ensure strict conditions of the time in searching and rescuing. In this paper, we propose an architecture that supports the communication among rescuers or between rescuers with victims or between victims with their relatives by using the flying network for emergency over satellite systems. We particularly propose a MAC protocol based on IEEE 802.11p and IEEE 1609.4 protocols called Cluster-based Multichannel MAC IEEE 802.11p protocol to support communication in flying ad-hoc network for emergency.

The publication has been prepared with the support of the RUDN University Program 5-100 and funded by RFBR according to the research project No. 20-37-70059.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, T., Seok, J., Lee, I., Han, J.: Reliable flying IoT networks for UAV disaster rescue operations. Mob. Inf. Syst. 2018, 1–12 (2018)

    Article  Google Scholar 

  2. Dinh, T.D., Pham, V.D., Kirichek, R., Koucheryavy, A.: Flying network for emergencies. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 58–70. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99447-5_6

    Chapter  Google Scholar 

  3. Dinh, T.D., et al.: Unmanned aerial system-assisted wilderness search and rescue mission. Int. J. Distrib. Sens. Netw. 15(6) (2019). https://doi.org/10.1177/1550147719850719

    Article  Google Scholar 

  4. Xu, D., Zhang, H., Zheng, B., Xiao, L.: A priority differentiated and multi-channel MAC protocol for airborne networks. In: 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), pp. 64–70. IEEE (2016)

    Google Scholar 

  5. IEEE Standards Association. 802.11p-2010-IEEE standard for information technology-local and metropolitan area networks-specific requirements-part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: wireless access in vehicular environments (2010). http://standards.ieee.org/findstds/standard/802.11p-2010.html

  6. Park, J.H., Choi, S.C., Kim, J., Won, K.H.: Unmanned aerial system traffic management with WAVE protocol for collision avoidance. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 8–10. IEEE (2018)

    Google Scholar 

  7. Pu, C.: Jamming-resilient multipath routing protocol for flying ad hoc networks. IEEE Access 6, 68472–68486 (2018)

    Article  Google Scholar 

  8. IEEE 1609 Working Group. IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-Channel Operation. IEEE Std (2016): 1609-4

    Google Scholar 

  9. Uzcategui, R.A., De Sucre, A.J., Acosta-Marum, G.: Wave: a tutorial. IEEE Commun. Mag. 7(5), 126–133 (2009)

    Article  Google Scholar 

  10. Sun, W., Zhang, H., Pan, C., Yang, J.: Analytical study of the IEEE 802.11p EDCA mechanism. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 1428–1433. IEEE (2013)

    Google Scholar 

  11. Eichler, S.: Performance evaluation of the IEEE 802.11p WAVE communication standard. In: 2007 IEEE 66th Vehicular Technology Conference, pp. 2199–2203. IEEE (2007)

    Google Scholar 

  12. Koucheryavy, A., Vladyko, A., Kirichek, R.: State of the art and research challenges for public flying ubiquitous sensor networks. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) ruSMART 2015. LNCS, vol. 9247, pp. 299–308. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23126-6_27

    Chapter  Google Scholar 

  13. Bekmezci, I., Ermis, M., Kaplan, S.: Connected multi UAV task planning for flying ad hoc networks. In: 2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 28–32. IEEE (2014)

    Google Scholar 

  14. Sharma, V., Kumar, R.: A cooperative network framework for multi-UAV guided ground ad hoc networks. J. Intell. Robot. Syst. 77(3–4), 629–652 (2015)

    Article  Google Scholar 

  15. Bekmezci, I., Sahingoz, O.K., Temel, Ş.: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  16. Kenney, J.B.: Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  17. Marconato, E.A., Maxa, J.A., Pigatto, D.F., Pinto, A.S., Larrieu, N., Branco, K.R.C.: IEEE 802.11n vs. IEEE 802.15.4: a study on Communication QoS to provide Safe FANETs. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), pp. 184–191. IEEE (2016)

    Google Scholar 

  18. Hayat, S., Yanmaz, E., Bettstetter, C.: Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11n and 802.11ac. In: 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1991–1996. IEEE (2015)

    Google Scholar 

  19. Zhou, Y., Cheng, N., Lu, N., Shen, X.S.: Multi-UAV-aided networks: aerial-ground cooperative vehicular networking architecture. IEEE Veh. Technol. Mag. 10(4), 36–44 (2015)

    Article  Google Scholar 

  20. Yanmaz, E., Hayat, S., Scherer, J., Bettstetter, C.: Experimental performance analysis of two-hop aerial 802.11 networks. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 3118–3123. IEEE (2014)

    Google Scholar 

  21. Rawashdeh, Z.Y., Mahmud, S.M.: Media access technique for cluster-based vehicular ad hoc networks. In: 2008 IEEE 68th Vehicular Technology Conference, pp. 1–5. IEEE (2008)

    Google Scholar 

  22. Almalag, M.S., Olariu, S., Weigle, M.C.: TDMA cluster-based MAC for VANETs (TC-MAC). In: 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6. IEEE (2012)

    Google Scholar 

  23. Torabi, N., Ghahfarokhi, B.S.: Survey of medium access control schemes for inter-vehicle communications. Comput. Electr. Eng. 64, 450–472 (2017)

    Article  Google Scholar 

  24. Park, J.H., Choi, S.C., Hussen, H.R., Kim, J.: Analysis of dynamic cluster head selection for mission-oriented flying ad hoc network. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 21–23. IEEE (2017)

    Google Scholar 

  25. Friis, H.T.: A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)

    Article  Google Scholar 

  26. Bazzi, A., Masini, B.M., Zanella, A., Thibault, I.: On the performance of IEEE 802.11p and LTE-V2V for the cooperative awareness of connected vehicles. IEEE Trans. Veh. Technol. 66(11), 10419–10432 (2017)

    Article  Google Scholar 

  27. Mammu, A.S.K., Hernandez-Jayo, U., Sainz, N.: Cluster-based MAC in VANETs for safety applications. In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1424–1429. IEEE (2013)

    Google Scholar 

  28. Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., Saidane, L.A.: TDMA-based MAC protocols for vehicular ad hoc networks: a survey, qualitative analysis, and open research issues. IEEE Commun. Surv. Tutor. 17(4), 2461–2492 (2015)

    Article  Google Scholar 

  29. ITU-T Rec. Y.1541: Network performance objectives for IP-based services. International Telecommunication Union, ITU-T (2003)

    Google Scholar 

  30. Serrano, P., Banchs, A., Patras, P., Azcorra, A.: Optimal configuration of 802.11e EDCA for real-time and data traffic. IEEE Trans. Veh. Technol. 59(5), 2511–2528 (2010)

    Article  Google Scholar 

  31. Serrano, P., Banchs, A., Kukielka, J.F.: Optimal configuration of 802.11e EDCA under voice traffic. In: IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference, pp. 5107–5111. IEEE (2007)

    Google Scholar 

  32. Banchs, A., Vollero, L.: Throughput analysis and optimal configuration of 802.11e EDCA. Comput. Netw. 50(11), 1749–1768 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Tran Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinh, T.D., Le, D.T., Tran, T.T.T., Kirichek, R. (2019). Flying Ad-Hoc Network for Emergency Based on IEEE 802.11p Multichannel MAC Protocol. In: Vishnevskiy, V., Samouylov, K., Kozyrev, D. (eds) Distributed Computer and Communication Networks. DCCN 2019. Lecture Notes in Computer Science(), vol 11965. Springer, Cham. https://doi.org/10.1007/978-3-030-36614-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36614-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36613-1

  • Online ISBN: 978-3-030-36614-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics