Skip to main content

A Network Theoretical Approach to Identify Vulnerabilities of Urban Drainage Networks Against Structural Failures

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 882))

Included in the following conference series:

Abstract

This paper compares two different representations (primal-mapping and dual-mapping) and applies a range of topological metrics to analysis the vulnerability of an urban drainage network (UDN) against structural failures, which is examined in the Elster Creek catchment. Based on the node degree distribution, the properties of the dual graph are similar to a scale-free network while the primal graph behaves like a random network. Further, the results show that the structure of the dual graph has better connectivity and redundancy compared to the structure of the primal graph. To identify vulnerabilities this paper test’s a new centrality metrics, that modifies betweenness centrality based on the UDN’s performance. This new metric ranks the most vulnerable conduit in the UDN. To validate the ranking a hydrodynamic model is used as a reference. The results show the significance of the structural metric in identifying critical components of the UDN and suggest a dual representation is an appropriate method for investigating vulnerabilities of an UDN against structural failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \( p_{k} \approx k^{ - \gamma } \).

  2. 2.

    \( p_{k} = \left( {\begin{array}{*{20}c} {N - 1} \\ k \\ \end{array} } \right)p^{k} \left( {1 - p} \right)^{N - 1 - k} \).

  3. 3.

    \( p_{k} = e^{ - \left\langle k \right\rangle } \frac{{\left\langle k \right\rangle^{k} }}{k!} \).

  4. 4.

    \( UDNBC^{'} = \frac{{UDNBC - UDNBC_{min} }}{{UDNBC_{max} - UDNBC_{min } }} \).

References

  1. Zhang, C., Wang, Y., Li, Y., Ding, W.: Vulnerability analysis of urban drainage systems: tree vs. loop networks. Sustainability 9, 397 (2017)

    Article  Google Scholar 

  2. Mugume, S., Butler, D.: Evaluation of functional resilience in urban drainage and flood management systems using a global analysis approach. Urban Water J. 14(7), 727–736 (2017)

    Article  Google Scholar 

  3. Mugume, S., Gomez, D., Fu, G., Farmani, R., Butler, D.: A global analysis approach for investigating structural resilience in urban drainage systems. Water Res. 81, 15–26 (2015)

    Article  Google Scholar 

  4. Yazdani, A., Jeffrey, P.: Applying network theory to quantify the redundancy and structural robustness of water distribution systems. Water Resour. Plann. Manag. 138(2), 153–161 (2011)

    Article  Google Scholar 

  5. Newman, M.: Networks: An Introduction. Oxford Scholarship Online (2010). https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

  6. Barabasi, A.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  7. Krueger, E., Klinkhamer, C., Urich, C., Zhan, X., Rao, P.: Generic patterns in the evolution of urban water networks: evidence from a large Asian city. Am. Phys. Soc. 95(3) (2017)

    Google Scholar 

  8. Yazdani, A., Jeffrey, P.: Water distribution system vulnerability analysis using weighted and directed network models. Water Resour. Res. 48(6) (2012). https://doi.org/10.1029/2012WR011897

  9. Agathokleous, A., Christodoulou, C., Christodoulou, S.: Topological robustness and vulnerability assessment of water distribution networks. Water Resour. Manag. 31, 4007–4021 (2017)

    Article  Google Scholar 

  10. Girvan, M., Newman, E.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  11. Ulusoy, A., Stoianov, I., Chazerain A.: Integrating graph theory and hydraulic model-based measures for the analysis of WDN resilience. In: 1st International WDSA/CCWI 2018 Joint Conference; Kingston, Ontario, Canada (2018)

    Google Scholar 

  12. Torres, J., Duenas-Osorio, L., Li, Q., Yazdani, A.: Exploring topological effects on water distribution system performance using graph theory and statistical models. Am. Soc. Civil Eng. (2016). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000709

    Article  Google Scholar 

  13. Zimmerman, R., Zhu, Q., Dimitric, C.: A network framework for dynamic models of urban food, energy and water systems (FEWS). Environ. Prog. Sustain. Energy 37(1), 122–131 (2017)

    Article  Google Scholar 

  14. Hwang, H., Lansey, K.: Water distribution system classification using system characteristics and graph-theory metrics. Water Resour. Planning Manag. 143(12), 04017071-1–0401707-13 (2017)

    Google Scholar 

  15. Herrera, M., Abraham, E., Stoianov, I.: A Graph-theoretic framework for assessing the resilience of sectorised water distribution networks. Water Resour. Manag., 1685–1699 (2016)

    Google Scholar 

  16. Masucci, A., Stanilov, K., Batty, M.: Exploring the evolution of London’s street network in the information space: a dual approach. Am. Phys. Soc. E 89 (2014). https://doi.org/10.1103/physreve.89.012805

  17. Kalapala, V., Sanwalani, V., Clauset, A., Moore, C.: Scale invariance in road networks. Phys. Rev. E 73 (2006). https://doi.org/10.1103/physreve.73.026130

  18. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a dual approach. Phys. A 369, 853–866 (2006)

    Article  Google Scholar 

  19. Rosvall, M., Trusina, A., Minnhagen, P., Sneppen, K.: Networks and cities: an information perspective. Phys. Rev. Lett. 94, 028701 (2005)

    Article  Google Scholar 

  20. Boccaletti, A., Latora, V., Morenod, Y., Chavezf, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  21. Thrysøe, C., Arnbjerg-Nielsen, K., Borup, M.: Identifying fit-for-purpose lumped surrogate models for large urban drainage systems using GLUE. J. Hydrol. 568, 517–533 (2018)

    Article  Google Scholar 

  22. Olesen, L., Löwe, R., Arnbjerg-Nielsen, K.: Flood damage assessment – literature review and recommended procedure. Cooperative Research Centre for Water Sensitive Cities, Clayton Campus Monash University, Australia (2017)

    Google Scholar 

  23. Rossman, L.: Storm water management model user’s manual, version 5. Water Supply and Water Resources Division National Risk Management Research Laboratory Cincinnati, OH 45268 (2009)

    Google Scholar 

  24. Zhan, X., Ukkusuri, S.: Dynamics of functional failures and recovery in complex road networks (2017). https://www.researchgate.net/publication/320791885. Accessed 12 Sep 2018

  25. Masucci, A., Smith, D., Crook, A., Batty, M.: Random planar graphs and the London street network. Eur. Phys. J. B 71, 259–271 (2009)

    Article  MathSciNet  Google Scholar 

  26. Yang, S., Paik, K., McGrath, G.S., Urich, C., Krueger, E., Kumar, P., Roa, P.S.C.: Functional topology of evolving urban drainage networks. Water Resour. Res. 53, 8966–8979 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

The Australian Government, Department of Education and Training - Research Training Program (RTP) funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paria Hajiamoosha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hajiamoosha, P., Urich, C. (2020). A Network Theoretical Approach to Identify Vulnerabilities of Urban Drainage Networks Against Structural Failures. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_73

Download citation

Publish with us

Policies and ethics