Abstract
We are proposing two greedy and a new linear programming based approximation algorithm for the total positive influence dominating set problem in weighted networks. Applications of this problem in weighted settings include finding: a minimum cost set of nodes to broadcast a message in social networks, such that each node has majority of neighbours broadcasting that message; a maximum trusted set in bitcoin network; an optimal set of hosts when running distributed apps etc.. Extensive experiments on different generated and real networks highlight advantages and potential issues for each algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 3–14. Springer, Heidelberg (2006)
Blondel, V., Guillaume, J., Lambiotte, R., Mech, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008)
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press (2001). https://doi.org/10.1017/CBO9780511814068
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016
Chen, N., Meng, J., Rong, J., Zhu, H.: Approximation for dominating set problem with measure functions. Comput. Inform. 23, 37–49 (2004)
Condon, A., Karp, R.: Algorithms for graph partitioning on the planted partition model. Random Struct. Algor. 18, 116–140 (2001)
Dhawan, A., Rink, M.: Positive influence dominating set generation in social networks. In: 2015 International Conference on Computing and Network Communications (CoCoNet), pp. 112–117, December 2015
Dinh, T., Shen, Y., Nguyen, D., Thai, M.: On the approximability of positive influence dominating set in social networks. J. Comb. Optim. 27(3), 487–503 (2014). https://doi.org/10.1007/s10878-012-9530-7
Dunbar, J., Hoffman, D., Laskar, R., Markus, L.: \(\alpha \)-domination. Discrete Math. 211, 11–26 (2000)
Gagarin, A., Poghosyan, A., Zverovich, V.: Randomized algorithms and upper bounds for multiple domination in graphs and networks. Discrete Appl. Math. 161(4-5), 604 – 611 (2013). http://www.sciencedirect.com/science/article/pii/S0166218X11002423
Gagarin, A., Poghosyan, A., Zverovich, V.E.: Upper bounds for alpha-domination parameters. Graphs Comb. 25(4), 513–520 (2009)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Greaves, C., Reddy, P., Sheppard, K.: Supporting behaviour change for diabetes prevention. In: Schwarz, P., Reddy, P., Greaves, C., Dunbar, J. (eds.) Diabetes Prevention in Practice, pp. 19–29. Tumaini Institute for Prevention Management, Dresden (2010)
Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using networkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), Passadena, CA, USA, pp. 11–15, August 2008
Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002)
Johnson, D.S., Aragon, C.R., Mcgeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 39, 378–406 (1991)
Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-tuple domination in graphs. Inf. Process. Lett. 89(2), 75–83 (2004). https://doi.org/10.1016/j.ipl.2003.10.004
Lee, Y.T., Sidford, A.: Efficient inverse maintenance and faster algorithms for linear programming. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 230–249, October 2015
Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
Lewandowski, G., Condon, A.: Experiments with parallel graph coloring heuristics and applications of graph coloring (1994)
Lin, G., Guan, J., Feng, H.: An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks. Phys. A: Stat. Mech. Appl. 500, 199–209 (2018). http://www.sciencedirect.com/science/article/pii/S0378437118302218
Molnàr Jr., F., Derzsy, N., Czabarka, E., Székely, L., Szymanski, B.K., Korniss, G.: Dominating scale-free networks using generalized probabilistic methods. Sci. Rep. 4(6308) (2014). http://www.nature.com/srep/2014/140909/srep06308/full/srep06308.html
Nguyen, T.H.: Graph coloring benchmark instances. https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html. Accessed 14 Oct 2018
Porumbel, D.: DIMACS graphs: benchmark instances and best upper bounds (2011). http://www.info.univ-angers.fr/pub/porumbel/graphs/
Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015). http://networkrepository.com
Vazquez-Araujo, F., Dapena, A., Souto-Salorio, M.J., Castro, P.M.: Calculation of the connected dominating set considering vertex importance metrics. Entropy 20(2) (2018). http://www.mdpi.com/1099-4300/20/2/87
Vukadinovic Greetham, D., Poghosyan, A., Charlton, N.: Weighted alpha-rate dominating sets in social networks. In: Tenth International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), Marrakech, Morocco, pp. 369–375, 23–27 November 2014
Wang, F., et al.: On positive influence dominating sets in social networks. Theor. Comput. Sci. 412(3), 265–269 (2011). http://www.sciencedirect.com/science/article/pii/S0304397509007221
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Vukadinović Greetham, D., Charlton, N., Poghosyan, A. (2020). Total Positive Influence Domination on Weighted Networks. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-36687-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36686-5
Online ISBN: 978-3-030-36687-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)