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Abstract. We are proposing two greedy and a new linear programming
based approximation algorithm for the total positive influence dominat-
ing set problem in weighted networks. Applications of this problem in
weighted settings include finding: a minimum cost set of nodes to broad-
cast a message in social networks, such that each node has majority of
neighbours broadcasting that message; a maximum trusted set in bitcoin
network; an optimal set of hosts when running distributed apps etc. Ex-
tensive experiments on different generated and real networks highlight
advantages and potential issues for each algorithm.
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1 Introduction

In complex networks, one often wants to control or support a dynamic process
unfolding on the network. For instance, it is beneficial to have a support com-
munity for a social network intervention to work on an individual (see e.g. [13]),
so that change affirmative messages can come from multiple sources. For this
reason, an intervention designer might want to identify a support subset of the
whole social network, which will form the basis for intervention. In media and
communication, conflicting messages often travel through the network. Identify-
ing the minimum set of nodes that can broadcast a particular message, so that
each node hears that message from majority of its neighbours would be useful
(one can assume that a ‘broadcasting’ cost is associated to each node). In dis-
tributed systems, each node often has a cost assigned of running a distributed
app. Then, the aim is to find the most cost effective subset of nodes in order to
offer some resilience guarantees to all users - for example, that each node has at
least o * 100% of its neighbourhood running the app.

In graph theory, a set of nodes such that all the other, or indeed all the
nodes are connected to that set is called a dominating set. The related opti-
misation problem of finding a dominating set of minimum size is NP-complete
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[12]. From the 1950s onward, different variants of this problem have been inves-
tigated. Based on problems in ad-hoc communications networks, k-domination
was explored where each node not in the dominating set needs to have at least k
neighbours in the dominating set. Similarly, two versions, positive influence dom-
inating set where all nodes not in the dominating set D have to have at least half
of its neighbourhood in D (or all nodes for the total version) were proposed. A
generalised version, for any percentage of neighbourhood: o domination (where
each node, except those in dominating set, needs to have at least « * 100 per-
cent of its neighbours in the dominating set) is proposed in [9]. Finally, a-rate
domination is defined in [11] where nodes in the dominating set are included
in the requirement, and the constraint is imposed on the closed neighbourhood
(neighbours and the node itself). Again, finding minimum cardinalities of « and
a-rate dominating sets is NP-complete. In this work, we propose and experimen-
tally analyse three new algorithms for the total positive influence dominating set
problems on weighted networks, thus looking into a more general problem.

In the next section we give preliminaries and a quick overview of the relevant
previous work. In Section 3, we present two greedy algorithm variants based on
different strategies for node selection. In Section 4, an algorithm that exploits
the network’s community structure is proposed. We analyse the results obtained
from different algorithms ran on families of random generated graphs and real-
world networks in Section 5. Finally, we discuss our results and give some pointers
to future work in Section 6.

2 Preliminaries

Let G(V, E), where V is a set of nodes, and E is the set of edges between them,
be a simple, undirected graph (network) with non-negative weights on the nodes,
defined by a function

w:V — RTU{0}.

We denote with w, the weight of a node v.
Let d, denote a degree (a number of connections) for each v € V. The
neighbourhood N (v) of v is a set of all adjacent nodes to v, thus

N(v) ={wjyw € E.}

Obviously, d, = |N(v)].

A total positive influence domination set (TPIDS) D is a subset of V' such
that for each v € V at least [a|N(v)|] nodes in N(v) are in D, for a = . We
relax the last assumption and discuss the problem when « € (0,1) instead. The
weight of D is Wp = Y . w,. We want to find the minimum weight TPIDS
(MWTPIDS).

For each v; € V, 1 < i < n let the variable x; has the following meaning;:
x; = 1 if v; is contained in MWTPIDS and x; = 0 otherwise. We consider
the following linear programming relaxation LP of an integer program I P that
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describes MWTPIDS (see [27]):

n
min Zwixi (1>
=1

s.t. Z zj > [a|N(v;)|], Vv, €V
v; €N (vy)
0<z; <1, VI<i<nm.

The LP 1 is polynomial-time solvable and we can compute an optimal solution
{Zi}1<i<n- If we denote with IPopr an optimal solution of the corresponding
integer program IP we have that

IPopr > wid;. (2)

i=1

2.1 Previous work

Due to their suitability to a wide range of applications in networks design and
control, variants of domination problems have been studied thoroughly. This
includes a study of corresponding computational complexities for different vari-
ants and development of exact and approximation algorithms (e.g. [17], [1], [26]).
The widely explored variants include the basic dominating set problem and its
weighted version where weights are on nodes. The minimum weighted dominat-
ing set problem is one of the classic NP-hard optimisation problems in network
theory [12]. A generalisation of the domination set problem on node-weighted
networks, where the direct connections are replaced with shortest paths corre-
sponding to some measure f defined on the nodes of a network, was explored
in [5]. The authors have used randomised rounding to prove the approximation
ratio of O(log A’) for their algorithm, where A’ is the maximum cardinality of
the sets of nodes that can be dominated by any single node through the defined
shortest paths. Molnar et al. [22] proposed probabilistic dominating set selec-
tion strategies for large heterogeneous non-weighted graphs and explored how the
structure of networks influences performances of degree dependent probabilistic
method based approximation algorithms and greedy algorithms.

Another generalisation, the a-domination problem, was introduced by Dun-
bar et al. in [9], where each node not in the dominating set is required to have at
least ax 100 percents of neighbours in the dominating set. Similarly, the concept
of a-rate domination [11] requires each node in the network to have at least
a x 100 percents of the closed neighbourhood in the dominating set. Both the
« and a-rate domination problems are proven to be NP-complete. New upper
bounds and randomised algorithms for finding the a and a-rate domination sets
in terms of a parameter o and network node degrees on undirected simple finite
graphs are provided by using the probabilistic method in [10] and [11].

Wang et al. [28] investigated the propagation of influence in the context
of social networks. They introduced new variants of domination such as the
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positive influence dominating set (PIDS) and total positive influence dominating
set (TPIDS). Actually, the definitions of PIDS is equivalent to a-dominating set
problem for a special case when o = 1/2. Dinh et al. [8] have generalised PIDS
and TPIDS by allowing any 0 < « < 1, presenting a linear time exact algorithm
for trees, and approximation algorithms for minimum PIDS and TPIDS within
a factor In A 4+ O(1), where A is the maximum degree of the network

A new greedy algorithm for minimum TPIDS is proposed in [7] and compared
with two previous greedy strategies, noting that for PIDS and TPIDS different
strategies are needed. Minimum TPIDS (as defined here, although the authors
are calling it PIDS) is presented as an integer linear program in [21]. In [27], the
alpha-rate domination on node-weighted networks is investigated. An algorithm
based on randomised rounding of linear programming formulation of the problem
is given, with a proof of its approximation ratio to be loga A(G), where A is the
maximum degree of the network. With a slight modification, this algorithm can
be applied to MWTIPDS, but for large networks, solving LP takes time [18]. Here
we contribute with three fast alternatives and compare the quality of results for
different network types.

3 Greedy algorithms

In this section, we consider two greedy techniques for solving the minimum
weighted total positive influence dominating set problem. The Algorithm 1 below
describes a generic greedy algorithm to find MWTPIDS, where we assign a cost
function g (defined on the next page) to all nodes according to their weight and
degree, and select the nodes with minimal cost to be in the dominating set.

Algorithm 1 Greedy algorithms for MWTPIDS
Require: A network G, a real number o, 0 < o < 1
Ensure: A low weight TPIDS D of G

1: Initialize D = (§; { Form a set D C V(G)}

2: for all nodes v € G\ D do

3 compute ¢,; assign g(v) := wy/cy

4: end for

5: while Jv € V(G) s.t. r > 0,7 := [a|N(v)|] — [N(v) N D| do

6:  sort g(v)

7 for kK <=rdo

3 add argmin, g(v) to D { Add smallest r nodes according to g }

9:  end for

10:  for all nodes v € G\ D do

11: recompute g(v) { Repeat 2-4 }

12:  end for

13: end while

14: return D; { D is a low-weight a-rate dominating set}
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As expected with a greedy process, this does not necessarily yield the optimal
solution. We consider and implement two different strategies of cost computation,
that determines the nodes added to the dominating set. Those are:

S1: ¢, = d, — n, where n is the number of v’s neighbours that are in D or
dominated, and the cost g(v) = %=, thus the nodes with large degree (dis-
counting for neighbours that are already in domination set or dominated),
but smaller weight are picked up first;

52 ¢y = Y, en(w)\Dus Wus 9(V) = 2 (S are the dominated nodes), hence the
nodes with smaller weight and large neighbourhood weight are picked up
first (again, we discount for neighbours already in D or dominated).

The first strategy S1 tries to balance minimising weight with the minimising the
size of a dominating set. The second strategy S2 is based on reasoning that it
should be beneficial to take ‘light’ nodes with ‘heavy’ neighbourhoods as then
less heavy neighbours will be needed in the dominating set. In both cases when
we calculate cost-functions, we are not considering nodes already in dominating
set or dominated.

Since we may need to browse through all the neighbours of nodes in V', in total
it can take O(n?) steps to calculate domination rate for each node v € V(G).
Then computing and sorting a cost function g for each node can take O(n?) steps
in the worst case. This needs to be recomputed in each loop iteration, hence, in
total, the set D can be computed in O(n?) steps.

4 An algorithm using community structure - RRWC

As the range and size of a network determine the size of the linear programme
that needs to be solved, we investigated the so called block separability strat-
egy. Our problem in its linear programming form 1, similar to the one in [27],
when there is a genuine community structure in the network, can benefit from
block separability (see [4]). The community structure here means that almost
all the edges belonging to the nodes inside a community are toward the nodes
in the same community and only very few are to the nodes in other communi-
ties. Therefore, the cost function can be (approximately) separated across the
communities, the adjacency matrix is (approximately) block-diagonal, so we can
solve LPs similar to those in 1 separately for each community (note that this
can be done in parallel). Firstly, we split a network into communities, then we
solve a linear programme for each of communities, and use randomised rounding
inside communities. Finally, we check if all the nodes are @ dominated, and if
not, we add a required number of nodes to the final solution. We implemented
this algorithm in Python using NetworkX, and the module Community* that
deploys the Louvain method of community detection given in [2].

We will denote this algorithm AIgRRWC and it is presented below, see
Algorithm 2 (RRWC stands for randomised rounding with communities).

4 http://perso.crans.org/aynaud/communities/
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Algorithm 2 Algorithm RRWC for MWTPIDS
Require: A network G, a real number o, 0 < a < 1
Ensure: A low weight TPIDS D of G

1: Initialize D = @;violation= 1

2: Split G into communities C', ... Cy;

3: for all C; do

4:  while no-of-runs < [log, A(G)] and violation== 1 do
5: solve LP; x =Ip.result;

6: for all z; do

7 r = random.uni form(0,0.5)

8: if r < xz; then

9: add z; to D

10: end if

11: end for

12: for all z; do

13: if |IDNN(vi)| < [a* N(v;)]| then
14: violation=1

15: else

16: violation= 0

17: end if

18: end for

no-of-run-++
19: end while
20: end for
21: for all node v € G do
22:  ifr=Jax|N®)[] —|DNN(v)| >0 then

23: add the first lightest r neighbours not already in D to D
24:  end if
25: end for

26: return D; { D is a low-weight a-rate dominating set}

5 Results

We have applied our algorithms on three real-life networks obtained from Face-
book and Bitcoin Alpha. In addition, to thoroughly test advantages and potential
issues for each algorithm, we created three types of random networks and sev-
eral graph colouring benchmark random graphs. All experiments were run on
a MacBookPro, MacOS High Sierra 10.13.6 with Intel Core i7 at 3.5GHz and
16GB of RAM.

5.1 Real-life networks

Firstly, two publicly available Facebook networks from network repository were
obtained [25]. The first one, socfb-mich67 (fbl) is quite dense without obvious
community structure, while the other one, socfb-nips-eg (fb2) is relatively sparse
connecting different ego-nets. The largest connected component is extracted in
each case and a random integer from 1 to 10 is assigned as a weight to each node.
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We also used a real network from [19], Bitcoin-alpha network ‘who-trusts-whom
network of people who trade using Bitcoin on a platform called Bitcoin Alpha’.
This is a directed network with integer edge weights from —10 (total distrust) to
+10 (total trust). Pre-processing was needed, in order to have positive weights
only, and to turn maximisation into minimisation problem. We added 10 to each
edge score, and then calculated the node weights w, in following way: for each
node v, W,, denoted the sum of all incoming edges’ weights, then

W,

Wy =1— — "
! mazyev (W)

so that all weights are between 0 and 1. We then converted the edges to undi-
rected. In this way, a minimum weight (most trusted) set of nodes is obtained,
such that each node had at least a neighbours in that set.

Table 1. Real-world network statistics: V' denotes the number of nodes, E the number
of edges, A the max degree, dq.4 the average degree, Comms the number of communities
detected by Louvain algorithm and w4 is the average node weight.

network VvV E A apg Comms Wy

fb1l 3745 81901 419 43.74 9 5.46
fb2 2888 2981 769 2.06 8 5.48
bitcoinalpha 3775 14120 511 7.48 22 0.98

5.2 Random networks

We have generated three different types of random networks, with 10 networks
of each type. They all had a similar number of nodes and edges and were created
using methods from the NetworkX [14] package.

We also used some of random graphs from DIMACS graph colouring bench-
marks [24] and [23]. Weights were assigned uniformly at random from integers
between 1 and 10 (including the boundaries).

Random networks, ER type Often used as a benchmark, our first type,
ER network, Erdos-Rényi model[3] is obtained by choosing uniformly at ran-
dom from a family G(n,m) of all possible networks on n nodes with m edges
[3] resulting in a small diameter, high clustering coefficient and no genuine com-
munity structure. We used dense_gnm_random_graph method from NetworkX
with parameters n = 500, m = 5000 to create those networks and denote them
with ER.

Preferential attachment - high clustering networks, PN type We used
another NetworkX method powerlaw_cluster_graph to create networks that
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result in approximate power-law degree distribution and high average clustering
(we used parameters n = 500, m = 10 random edges for each node, 0.8 for
probability of triangles)[15] again without genuine community structure. These
networks are denoted with PN.

Planted l-partition networks, PLP type Additionally, we have created
networks that consisted of several interlinked modules or communities (in our
case 5 communities with equal sizes of 100). In these networks (also called
planted [-partition graphs [6]) nodes in the same community or subgraph are
interconnected with higher probability, in our case p;, = 0.18 (this value pro-
vides each community similar to other types of networks density), and nodes of
different communities are connected with much smaller probability, in our case
Pout = 0.0001. We used random_partition_graph NetworkX method. This re-
sults in networks having recognisable modular or block structure - with a lot of
links inside those 5 communities and only few links between different communi-
ties.

Graph colouring benchmark random graphs We have also downloaded
three random networks of different density: dsjc250-5 (an ER graph, but using
G(n,p) family of all graphs with n nodes and a probability of an edge between
any two nodes p with n = 250 and p = 0.5) from [16] again without commu-
nity structure, quite dense; r250-1 from [24] geometric random graph formed
by randomly placing 250 vertices in a unit square, then putting edges between
any two vertices that are within 0.1 distance of each other also from [16], rela-
tively sparse with (local neighbourhoods) community structure.; fpsol2-i-3 from
[23] from [20] register allocation graphs - a conflict graph of variables, with an
edge between the two if they are active in the same range of code, with density
between the other two, and some community structure. The weights for all the
networks listed above were created by picking uniformly a random number from
1 to 10. The descriptive statistics for these networks are given in Table 2.

5.3 Comparison

We used Gurobi®, a state-of-the art commercial mathematical programming
solver through its Python interface, to obtain the exact IP solutions for smaller
networks. AlgRR from [27], slightly adapted to MWTPIDS, which considers the
whole adjacency matrix inside a linear program, was used for larger networks.
We can see from Table 3 that, as expected, AlgRRWC performs well for networks
with well defined community structure (PLP graphs, fpsol2-i-3, and fb2 graph).
It is much faster than AlgRR (times given include the computation of com-
munities), in some instances three orders of magnitude, providing solutions of
similar order to AlgRR and sometimes outperforming it. Comparing two greedy
algorithms we observe that no simple winner between the two emerges. AlgG_S1

® https://www.gurobi.com
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performs better than AlgG_S2 and AlgRRWC on ER and 1250 graphs, while
AlgG_S2 is better on PN and dsjc250-5 graphs. For real networks, they are com-
petitive with AlgRRWC only on bitcoin network for higher threshold where both
perform identically. Overall AlgRRWC times and results are competitive with
two greedy algorithms, and therefore, AlgRRWC is recommended as a much
faster alternative to AlgRR for larger networks.

Table 2. Average statistics (from a sample of 10) for random generated networks and
three random networks from DIMACS graph colouring benchmarks; V' denotes the
number of nodes, E the number of edges, A the max degree, dqvg the average degree,
Comms the number of communities detected by Louvain algorithm and wgvg is the
average node weight.

network V E A dgug  Comms W,
ER-500-5000 500 5000 34.9 20 10.1 5.48
PLC-500-10-0.8 500 4874.3 143.519.5 84 5.46
PP5-100-0.18-0.0001 500 4417.7 30.5 17.67 5 5.44
dsjc250-5-rw.gexf 250 15668 147 125.34 6 5.53
r250-1-rw.gexf 250 867 13 694 14 5.34
fpsol2-i-3-rw.gexf 363 8688 346 47.87 4 5.55

6 Conclusions

Finding the set of minimum weight in a network such that each node has at least
« percentage of its neighbours in that set can be applied to different control and
intervention problems in distributed computing and social networks. Until now,
up to our knowledge, the weighted version of total positive influence domination
problem did not receive much attention. Our contributions consist of two greedy
strategies and a novel linear programming based algorithm for this problem. We
thoroughly test all proposed algorithms on a diverse set of random and real-life
networks with different structures.

Splitting linear programming formulation over communities and patching up
a solution offers much faster solution, when compared with the whole network
linear program AlgRR, and as expected, produces sometime even better so-
lutions when networks have relatively well defined community structure. Two
greedy strategies, one choosing nodes by sorting them according to their ratio
of degree and weight and the other of choosing ’lighter’ nodes with ’heavier’
neighbourhood, seem to be perform better than AlgRRWC only for ER and PN
graphs of moderate size, but with inferior solutions. For real-life networks with
community structure AlgRRWC is viable and much faster alternative to AlgRR.

It would be interesting to explore if conditioning of matrices used in linear
programming formulation can speed up solutions significantly and to see how
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Table 3. Alpha-rate domination sets’ average sizes (#), average weights (W) and
average running times (T) for AlgG_S1, AlgG_S2, AlgRRWC and AlgRR for three
different types of networks (with a sample of 10 networks for each type) and three
random networks from DIMACS graph-colouring benchmark set. In bold is given the
best result of the three new algorithms, and a star denotes when AlgRRWC is better
than AlgRR. For smaller networks Gurobi can be treated as a ground truth.

AlgG_S1 AlgG_S2 AlgRRWC AlgRR
network a # W Time(s) # Y% Time(s) # W Time(s) # W Time(s)
ER-500-5000 0.25 293.7 1095.3 0.50 300.4 1142.5 0.81 269.3 1227.9 0.49 224 742 22.10
ER-500-5000 0.50 401.1 1894.8  0.36 400.2 1893 0.50 386.9 1968.9 0.47 339.2 1467.7 20.56
ER-500-5000 0.75 472.3 2467.2 0.26 472.3 2467.9 0.31 471.3 2543.9 0.40 458.7 2386  22.61
PN-500 0.25 214.3 698.1 0.41 201.4 689.1 0.46 234.3 1261.8 0.56 137.7 428.8 18.49
PN-500 0.50 364.5 1615.3  0.39 343.7 1527.1 0.34 353.7 1877.7 0.60 265.2 1047  17.16
PN-500 0.75471.5 2450.3  0.24 471.1 2444 0.20 464.5 2552.4 0.56 419.1 2093.1 15.35
PLP-5-100 0.25 318.9 1282.2 0.53 322.21297.8 0.89 217.2 723.3" 0.40 216.8 730.9 26.43
PLP-5-100 0.50 403.9 1902.2 0.38 398.7 1868.8  0.62 338.1 1454.5 0.41 336 1430.6 17.20
PLP-5-100 0.75477.7 2500.3 0.24 477.4 2498.5 0.36 455.2 2348” 0.39 458.7 2386  13.77
AlgG_S1 AlgG_S2 AlgRRWC Gurobi
dsjc250-5 0.2584 203 0.35 83 199 0.47 85 227 0.57 73 166 6.41
dsjc250-5 0.5 148 521 0.24 146 509 0.33 156 602 0.54 136 459 42.80
dsjc250-5 0.75 208 989 0.24 203 949 0.26 220 1116 0.51 196 888 903.45
r250-1 0.25 226 1096 0.16 227 1106 0.15 141 675 0.27 95 305 1.58
r250-1 0.5 230 1136 0.11 239 1226 0.11 230 1264 0.28 150 576 1.88
r250-1 0.75 244 1276 0.06 244 1276 0.06 247 1330 0.19 208 1013  1.96
fpsol2-i-3 0.25 110 403 0.15 113 405 0.15 109 251 0.46 94 183 3.41
fpsol2-i-3 0.5 197 774 0.12 196 772 0.13 198 693 1.04 184 577 3.22
fpsol2-i-3 0.75 287 1333 0.15 281 1303 0.15 283 1285 0.41 274 1198  3.32
Table 4. Alpha-rate domination sets’ sizes (#), weights(W) and running times(T)
for AlgG_S1, AlgG_S2, AlgRRWC and AlgRR for real-world networks and o =
0.25,0.5,0.75 respectively.
AlgG_S1 AlgG_S2 AlgRRWC AlgRR

Graph a # W Time(s) # W Time(s) # W Time(s) # W Time(s)
bl 0.25 3638 19366  43.59 3653 19516  64.09 2207 13681 70.22 1001 3327 14294.23
fbl 0.5 3642 19406  34.75 364519436  39.93 2882 16771 50.52 1841 7607  8036.35
bl 0.75 3725 20236 16.99 3738 20366 16.92 3575 19977 40.87 2692 13112 7709.50
b2 0.25 1007 2236 2.34 1007 2236 1.30 876 1760 1.49 824 1612 123.14
b2 0.5 1691 5742 1.21 1691 5742 0.66 1619 5353 1.33 1572 5266 1218.46
b2 0.75 2221 9601 0.55 2221 9601 0.26 2292 10184 1.29 2296 10222 1393.59
bitcoinalpha 0.25 3195 3137.63 45.69 2978 2921.14 27.96 2777 2733.91 38.33 1361 1315.90 8332.39
bitcoinalpha 0.5 3388 3330.19 24.40 3388 3330.19 18.51 3681 3626.38 51.62 974 931.70 23303.20
bitcoinalpha 0.75 3772 3713.49 4.74 3772 3713.49 3.23 3775 3716.49 30.89 2252 2199.55 3714.60

combination of matrix rank, density and block-models structure influences the
quality and time of solutions. Also, further investigation of how skewed weight
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distributions affect different algorithms is needed. We hope that our results will
be helpful for network analysts in many different applications across social and
communication networks. Python code and networks will be made available on
GitHub®.
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