Skip to main content

DasNet: Dynamic Adaptive Structure for Accelerating Multi-task Convolutional Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11953))

Included in the following conference series:

Abstract

Multi-task learning solves a collection of different tasks by sharing a large encoder (common network). However, due to high computational demand for large common network, deploying multi-task learning on resource constrained devices is a challenging task. To guarantee overall accuracy with less computation, we introduce DasNet, which (1) automatically searches the adaptive common network sub-structure for each task; (2) fine-tunes corresponding decoders to adapt to the common network sub-structure. Our method can accelerate the real time inference procedure by dynamically building adaptive structure according to specific task requirements in actual scenarios. Notably, all extra memory and calculations we need for our method can be negligible. Experiments conducted on four public datasets (i.e., ILSCRC-2012, Birds200, CatVsDog, MIT67) demonstrate that our proposed method performs effectively compared with general multi-task network architecture and present related state of the art (SOTA) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving. In: IEEE Intelligent Vehicles Symposium, pp. 1013–1020 (2018)

    Google Scholar 

  2. Kokkinos, I.: UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5454–5463 (2017)

    Google Scholar 

  3. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)

    Google Scholar 

  4. Jou, B., Chang, S.-F.: Deep cross residual learning for multitask visual recognition. In: Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, pp. 998–1007 (2016)

    Google Scholar 

  5. Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate: lifelong learning with a network of experts. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp. 3366–3375 (2017)

    Google Scholar 

  6. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: The IEEE International Conference on Computer Vision, pp. 2051–2060 (2017)

    Google Scholar 

  7. Zhong, Y., Li, V., Okada, R., Maki, A.: Target aware network adaptation for efficient representation learning. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11132, pp. 450–467. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11018-5_38

    Chapter  Google Scholar 

  8. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)

    Google Scholar 

  9. Luo, J.H., Wu, J.: AutoPruner: an end-to-end trainable filter pruning method for efficient deep model inference (2018)

    Google Scholar 

  10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Press, New York (2016)

    Google Scholar 

  12. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)

    Google Scholar 

  13. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems, San Mateo, pp. 164–171 (1993)

    Google Scholar 

  14. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, vol. 28, pp. 1135–1143 (2015)

    Google Scholar 

  15. Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks. In: The European Conference on Computer Vision, pp. 304–320 (2018)

    Chapter  Google Scholar 

  16. Manessi, F., Rozza, A., Bianco, S., Napoletano, P., Schettini, R.: Automated pruning for deep neural network compression. In: 24th International Conference on Pattern Recognition, pp. 657–664 (2018)

    Google Scholar 

  17. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, vol. 29, pp. 2074–2082 (2016)

    Google Scholar 

  18. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural network compression. In: IEEE International Conference on Computer Vision, pp. 5068–5076 (2017)

    Google Scholar 

  19. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)1MB model size. In: CoRR (2016)

    Google Scholar 

  20. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: CoRR (2017)

    Google Scholar 

  21. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5987–5995. IEEE Press, New York (2017)

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset (2011)

    Google Scholar 

  24. Elson, J., Douceur, J.J., Howell, J., Saul, J.: A CAPTCHA that exploits interest-aligned manual image categorization. In: Proceedings of 14th ACM Conference on Computer and Communications Security (2007)

    Google Scholar 

  25. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–420 (2009)

    Google Scholar 

  26. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient transfer learning. In: International Conference of Learning Representation (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Nature Science Foundation of China under Grants 61673275, 61873166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengnian Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Wu, J., Long, C. (2019). DasNet: Dynamic Adaptive Structure for Accelerating Multi-task Convolutional Neural Network. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11953. Springer, Cham. https://doi.org/10.1007/978-3-030-36708-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36708-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36707-7

  • Online ISBN: 978-3-030-36708-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics