Abstract
Learning discriminative local features is the key to improving the accuracy of fine-grained recognition. Methods based on local area labeling are very labor intensive and time costly. Existing weakly supervised methods decide the discriminative areas according to the response of the advanced feature maps. However, the details of the many small objects, which are vital for the region localization, were lost. We propose a region selection model with saliency constraint to capture the details, where the feature pyramid network is used to obtain higher resolution features with stronger semantics, and then the regions on different level feature maps that are consistently to be most informative are selected. This process enhances the model’s ability to represent details and capture small but discriminative local regions. Furthermore, a saliency extractor which shares convolutional layers with the backbone network is built to locate the object in an image, which will help to locate the discriminative regions and improve the training efficiency. We use a ranking loss function to optimize the multi-scale and multi-ratio regions which are selected by our model. Experimentally, the proposed method is implemented in datasets CUB-200-2011 and Stanford Cars and it is achieved the state-of-the-art results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset (2011)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)
Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_54
Wei, X.S., Xie, C.W., Wu, J.: Mask-CNN: localizing parts and selecting descriptors for fine-grained image recognition. arXiv preprint arXiv:1605.06878 (2016)
Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 842–850 (2015)
Peng, Y., He, X., Zhao, J.: Object-part attention model for fine-grained image classification. IEEE Trans. Image Process. 27(3), 1487–1500 (2017)
Wang, Y., Morariu, V.I., Davis, L.S.: Learning a discriminative filter bank within a CNN for fine-grained recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4148–4157 (2018)
Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5209–5217 (2017)
Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)
Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for fine-grained classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 420–435 (2018)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lowe, D.G., et al.: Object recognition from local scale-invariant features. In: ICCV, vol. 99, pp. 1150–1157 (1999)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: international Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE Computer Society (2005)
Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: CVPR 2010–23rd IEEE Conference on Computer Vision and Pattern Recognition, pp. 3304–3311. IEEE Computer Society (2010)
Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)
Zhang, X., Xiong, H., Zhou, W., Lin, W., Tian, Q.: Picking deep filter responses for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1134–1142 (2016)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Sun, M., Yuan, Y., Zhou, F., Ding, E.: Multi-attention multi-class constraint for fine-grained image recognition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 805–821 (2018)
Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446 (2017)
Liu, X., Xia, T., Wang, J., Yang, Y., Zhou, F., Lin, Y.: Fully convolutional attention networks for fine-grained recognition. arXiv preprint arXiv:1603.06765 (2016)
Acknowledgements
The authors would like to thank the anonymous reviewers for their helpful and constructive comments. This work was partially supported by the National Natural Science Foundation of China (NSFC Grant No. 61972059, 61702055, 61773272, 61272059), Natural Science Foundation of Jiangsu Province under Grant (BK20191474, BK20161268). Research and Innovation Fund of the Science and Technology Development Center of the Ministry of Education (2018A01007), and Ministry of Education Science and Technology Development Center Industry-University Research Innovation Fund (2018A02003), and Humanities and Social Sciences Foundation of the Ministry of Education under Grant 18YJCZH229.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, S., Gong, S., Zhong, S., Pan, W., Ying, W. (2019). Region Selection Model with Saliency Constraint for Fine-Grained Recognition. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11953. Springer, Cham. https://doi.org/10.1007/978-3-030-36708-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-36708-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36707-7
Online ISBN: 978-3-030-36708-4
eBook Packages: Computer ScienceComputer Science (R0)