Skip to main content

Learning with Incomplete Labels for Multi-label Image Annotation Using CNN and Restricted Boltzmann Machines

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11954))

Included in the following conference series:

  • 1784 Accesses

Abstract

Multi-label image annotation based on convolutional neural networks (CNN) has seen significant improvements in recent years. One problem, however, is that it is difficult to prepare complete labels for the training images and usually training data has missing or incomplete labels. Restricted Boltzmann Machines (RBM) can explore the co-occurrence distribution of the labels and estimate the missing labels efficiently. Hence we intend to propose a novel learning model for multi-label image annotation with missing labels based on CNNs, which aims to regenerate the missing labels for an image by learning the generative model of labels using an RBM. Firstly, label sets are reconstructed by the pre-trained RBM model which is trained on data with some missing labels. Then the reconstructed label sets are used as a teacher signal to train the CNN. The effectiveness of the proposed approach is confirmed by comparing the performance with baseline CNNs using various performance evaluation metrics on two different data sets. Experimental results prove that our RBM-CNN formulation exceeds the performance of the baseline CNN.

This work was partly supported by JSPS KAKENHI Grant Number 16K00239.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  2. Chen, X., Mu, Y., Yan, S., Chua, T.S.: Efficient large-scale image annotation by probabilistic collaborative multi-label propagation. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 35–44 (2010)

    Google Scholar 

  3. Yeh, C.K., Wu, W.C., Ko, W.-J., Wang, Y.C.F.: Learning deep latent space for multi-label classification. In: AAAI, pp. 2838–2844 (2017)

    Google Scholar 

  4. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.T.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of ACM Conference on Image and Video Retrieval, CIVR 2009, 8–10 July 2009

    Google Scholar 

  5. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_7

    Chapter  Google Scholar 

  6. Fischer, A., Igel, C.: An introduction to restricted Boltzmann machines. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 14–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_2

    Chapter  Google Scholar 

  7. Gong, Y., Jia, Y., Leung, T., Toshev, A., Ioffe, S.: Deep convolutional ranking for multilabel image annotation. arXiv preprint arXiv:1312.4894 (2013)

  8. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

  9. Hugo, L., Michael, M., Razvan, P., Yoshua, B.: Learning algorithms for the classification restricted Boltzmann machine. J. Mach. Learn. Res. 13(1), 643–669 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105 (2012)

    Google Scholar 

  11. Li, X., Zhao, F., Guo, Y.: Conditional restricted Boltzmann machines for multi-label learning with incomplete labels. In: AISTATS, pp. 635–643 (2015)

    Google Scholar 

  12. Mojoo, J., Kurosawa, K., Kurita, T.: Deep CNN with graph Laplacian regularization for multi-label image annotation. In: ICIAR, pp. 19–26 (2017)

    Google Scholar 

  13. Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classification — revisiting neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 437–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_28

    Chapter  Google Scholar 

  14. Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label video annotation. In: Proceedings of the 15th International Conference on Multimedia, pp. 17–26 (2007)

    Google Scholar 

  15. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: van Dyk, D., Welling, M. (eds.) Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 5, pp. 448–455. PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, 16–18 April 2009. http://proceedings.mlr.press/v5/salakhutdinov09a.html

  16. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 791–798. ACM (2007)

    Google Scholar 

  17. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Datamining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

  18. Wang, C., Yan, S., Zhang, L., Zhang, H.J.: Multi-label sparse coding for automatic image annotation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1643–1650 (2009)

    Google Scholar 

  19. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a unified framework for multi-label image classification. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2285–2294 (2016)

    Google Scholar 

  20. Wu, B., Liu, Z., Wang, S., Hu, B.G., Ji, Q.: Multi-label learning with missing labels. In: The 22nd International Conference on Pattern Recognition (ICPR), pp. 2279–2289 (2014)

    Google Scholar 

  21. Wu, B., Lyu, S., Ghanem, B.: ML-MG: multi-label learning with missing labels using a mixed graph. In: The IEEE International Conference on Computer Vision (ICCV), pp. 4157–4165 (2015)

    Google Scholar 

  22. Zhang, M.L., Li, Y.K., Liu, X.Y., Geng, X.: Binary relevance for multi-label learning: an overview. Front. Comput. Sci. 12, 1–12 (2018)

    Article  Google Scholar 

  23. Zhao, Y., Miyao, J., Kurita, T.: Multi-label image annotation via CNN with graph Laplacian regularization based on Word2Vec. In: IW-FCV (2018)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Number 16K00239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Mojoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mojoo, J., Zhao, Y., Kavitha, M., Miyao, J., Kurita, T. (2019). Learning with Incomplete Labels for Multi-label Image Annotation Using CNN and Restricted Boltzmann Machines. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics