Skip to main content

RLDR-Pruning: Restricted Linear Dimensionality Reduction Approach for Model Compression

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11954))

Included in the following conference series:

Abstract

This paper studies pruning a trained deep neural network for resource-constrained devices. In general, pruning a trained CNN is an iterative process: start with a trained CNN; choose and prune the least important parameter; fine-tune to get another trained CNN. It is reasonable to define the least important parameter as the parameter that leads to the minimum accuracy drop after pruning and fine-tuning. However, directly searching such parameter is computationally infeasible because of fine-tuning. Therefore, current methods ignore fine-tuning when choosing parameter to prune. We take fine-tuning into consideration and propose our RLDR-pruning method. To make the searching feasible in our method, we first model the fine-tuning process and propose an one-step process called mini-tuning. Then, our RLDR-pruning replaces fine-tuning with mini-tuning when searching the least important parameter. Via experiments on classification tasks, we demonstrate that RLDR-pruning achieves significantly higher inference accuracy than existing techniques based on similar parameter optimization capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, K., Zhang, X., Ren, S., Sun, J.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  3. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  4. Szegedy, C., et al.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842 (2014)

  5. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  6. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

    Google Scholar 

  7. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  8. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset (2011)

    Google Scholar 

  9. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)

    Google Scholar 

  10. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  11. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  12. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv preprint arXiv:1706.05587 (2017)

  13. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE, October 2016

    Google Scholar 

  14. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)

    Google Scholar 

  15. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems, pp. 164–171 (1993)

    Google Scholar 

  16. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient transfer learning. arXiv preprint arXiv:1611.06440, 3 (2016)

  17. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural network compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5058–5066 (2017)

    Google Scholar 

  18. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878 (2017)

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Nature Science Foundation of China under Grants 61673275, 61873166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengnian Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Wu, J., Long, C. (2019). RLDR-Pruning: Restricted Linear Dimensionality Reduction Approach for Model Compression. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics