Skip to main content

Motion-Based Occlusion-Aware Pixel Graph Network for Video Object Segmentation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Abstract

This paper proposes a dual-channel based Graph Convolutional Network (GCN) for the Video Object Segmentation (VOS) task. The main contribution lies in formulating two pixel graphs based on the raw RGB and optical flow features. Both spatial and temporal features are learned independently, making the network robust to various challenging scenarios in real-world videos. Additionally, a motion orientation-based aggregator scheme efficiently captures long-range dependencies among objects. This not only deals with the complex issue of modelling velocity differences among multiple objects moving in various directions, but also adapts to change of appearance of objects due to pose and scale deformations. Also, an occlusion-aware attention mechanism has been employed to facilitate accurate segmentation under scenarios where multiple objects have temporal discontinuity in their appearance due to occlusion. Performance analysis on DAVIS-2016 and DAVIS-2017 datasets show the effectiveness of our proposed method in foreground segmentation of objects in videos over the existing state-of-the-art techniques. Control experiments using CamVid dataset show the generalising capability of the model for scene segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: NIPS (2016)

    Google Scholar 

  2. Bao, L., Wu, B., Liu, W.: CNN in MRF: video object segmentation via inference in a CNN-based higher-order spatio-temporal MRF. In: CVPR (2018)

    Google Scholar 

  3. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2009)

    Article  Google Scholar 

  4. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: CVPR (2017)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Cheng, J., Tsai, Y.H., Hung, W.C., Wang, S., Yang, M.H.: Fast and accurate online video object segmentation via tracking parts. In: CVPR (2018)

    Google Scholar 

  8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)

    Google Scholar 

  9. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  11. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convolutional networks. In: NIPS (2017)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: Evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  16. Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B.: Lucid data dreaming for object tracking. In: CVPR Workshops (2017)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2016)

    Google Scholar 

  18. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS (2011)

    Google Scholar 

  19. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  21. Luiten, J., Voigtlaender, P., Leibe, B.: PReMVOS: proposal-generation, refinement and merging for video object segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 565–580. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_35

    Chapter  Google Scholar 

  22. Maninis, K.K., et al.: Video object segmentation without temporal information. TPAMI 41(6), 1515–1530 (2018)

    Article  Google Scholar 

  23. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)

    Google Scholar 

  24. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. In: CVPR (2017)

    Google Scholar 

  25. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  26. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv:1704.00675 (2017)

  27. Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

    Article  Google Scholar 

  28. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. In: BMVC (2017)

    Google Scholar 

  29. Wug Oh, S., Lee, J.Y., Sunkavalli, K., Joo Kim, S.: Fast video object segmentation by reference-guided mask propagation. In: CVPR (2018)

    Google Scholar 

  30. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: CVPR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saptakatha Adak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adak, S., Das, S. (2019). Motion-Based Occlusion-Aware Pixel Graph Network for Video Object Segmentation. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics