Skip to main content

One Analog Neuron Cannot Recognize Deterministic Context-Free Languages

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11955))

Included in the following conference series:

Abstract

We analyze the computational power of discrete-time recurrent neural networks (NNs) with the saturated-linear activation function within the Chomsky hierarchy. This model restricted to integer weights coincides with binary-state NNs with the Heaviside activation function, which are equivalent to finite automata (Chomsky level 3), while rational weights make this model Turing complete even for three analog-state units (Chomsky level 0). For an intermediate model \(\alpha \)ANN of a binary-state NN that is extended with \(\alpha \ge 0\) extra analog-state neurons with rational weights, we have established the analog neuron hierarchy 0ANNs \(\subset \) 1ANNs \(\subset \) 2ANNs \(\subseteq \) 3ANNs. The separation 1ANNs \(\subsetneqq \) 2ANNs has been witnessed by the deterministic context-free language (DCFL) \(L_\#=\{0^n1^n\,|\,n\ge 1\}\) which cannot be recognized by any 1ANN even with real weights, while any DCFL (Chomsky level 2) is accepted by a 2ANN with rational weights. In this paper, we generalize this result by showing that any non-regular DCFL cannot be recognized by 1ANNs with real weights, which means (DCFLs \(\setminus \) REG\()\,\subset \,(\)2ANNs \(\setminus \) 1ANNs), implying 0ANNs \(=\) 1ANNs \(\cap \) DCFLs. For this purpose, we show that \(L_\#\) is the simplest non-regular DCFL by reducing \(L_\#\) to any language in this class, which is by itself an interesting achievement in computability theory.

Research was done with institutional support RVO: 67985807 and partially supported by the grant of the Czech Science Foundation GA19-05704S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results are partially valid for more general classes of activation functions [8, 12, 16, 24] including the logistic function [7].

  2. 2.

    In online input/output protocols, the time between reading two consecutive input symbols as well as the delay in outputting the result after an input has been read, is bounded by a constant, while in offline protocols these time intervals are not bounded.

References

  1. Alon, N., Dewdney, A.K., Ott, T.J.: Efficient simulation of finite automata by neural nets. J. ACM 38(2), 495–514 (1991)

    Article  MathSciNet  Google Scholar 

  2. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural networks: A characterization in terms of Kolmogorov complexity. IEEE Trans. Inf. Theory 43(4), 1175–1183 (1997)

    Article  MathSciNet  Google Scholar 

  3. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Netw. 9(2), 243–252 (1996)

    Article  Google Scholar 

  4. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0_85

    Chapter  Google Scholar 

  5. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60249-6_60

    Chapter  Google Scholar 

  6. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart operation. J. Automata Lang. Comb. 4(4), 287–311 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural networks. Inf. Comput. 128(1), 48–56 (1996)

    Article  MathSciNet  Google Scholar 

  8. Koiran, P.: A family of universal recurrent networks. Theoret. Comput. Sci. 168(2), 473–480 (1996)

    Article  MathSciNet  Google Scholar 

  9. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  10. Orponen, P.: Computing with truly asynchronous threshold logic networks. Theoret. Comput. Sci. 174(1–2), 123–136 (1997)

    Article  MathSciNet  Google Scholar 

  11. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  12. Siegelmann, H.T.: Recurrent neural networks and finite automata. J. Comput. Intell. 12(4), 567–574 (1996)

    Article  Google Scholar 

  13. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, Boston (1999). https://doi.org/10.1007/978-1-4612-0707-8

    Book  MATH  Google Scholar 

  14. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theoret. Comput. Sci. 131(2), 331–360 (1994)

    Article  MathSciNet  Google Scholar 

  15. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst. Sci. 50(1), 132–150 (1995)

    Article  MathSciNet  Google Scholar 

  16. Šíma, J.: Analog stable simulation of discrete neural networks. Neural Netw. World 7(6), 679–686 (1997)

    Google Scholar 

  17. Šíma, J.: Energy complexity of recurrent neural networks. Neural Comput. 26(5), 953–973 (2014)

    Article  MathSciNet  Google Scholar 

  18. Šíma, J.: Three analog neurons are Turing universal. In: Fagan, D., Martín-Vide, C., O’Neill, M., Vega-Rodríguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp. 460–472. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04070-3_36

    Chapter  Google Scholar 

  19. Šíma, J.: Counting with analog neurons. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11727, pp. 389–400. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30487-4_31

    Chapter  Google Scholar 

  20. Šíma, J.: Subrecursive neural networks. Neural Netw. 116, 208–223 (2019)

    Article  Google Scholar 

  21. Šíma, J., Orponen, P.: General-purpose computation with neural networks: a survey of complexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003)

    Article  Google Scholar 

  22. Šíma, J., Savický, P.: Quasi-periodic \(\beta \)-expansions and cut languages. Theoret. Comput. Sci. 720, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  23. Šíma, J., Wiedermann, J.: Theory of neuromata. J. ACM 45(1), 155–178 (1998)

    Article  MathSciNet  Google Scholar 

  24. Šorel, M., Šíma, J.: Robust RBF finite automata. Neurocomputing 62, 93–110 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Šíma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šíma, J., Plátek, M. (2019). One Analog Neuron Cannot Recognize Deterministic Context-Free Languages. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics