Abstract
The time it takes for a classifier to make an accurate prediction can be crucial in many behaviour recognition problems. For example, an autonomous vehicle should detect hazardous pedestrian behaviour early enough for it to take appropriate measures. In this context, we compare the switching linear dynamical system (SLDS) and a deep long short-term memory (LSTM) neural network, which are applied to infer pedestrian behaviour from motion tracks. We show that, though the neural network model achieves an accuracy of 80%, it requires long sequences to achieve this (100 samples or more). The SLDS, has a lower accuracy of 74%, but it achieves this result with short sequences (10 samples). To our knowledge, such a comparison on sequence length has not been considered in the literature before. The results provide a key intuition of the suitability of the models in time-critical problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012)
Cheng, B., Xu, X., Zeng, Y., Ren, J., Jung, S.: Pedestrian trajectory prediction via the social-grid LSTM model. J. Eng. 2018(16), 1468–1474 (2018). https://doi.org/10.1049/joe.2018.8316
Dabrowski, J.J., Beyers, C., de Villiers, J.P.: Systemic banking crisis early warning systems using dynamic Bayesian networks. Expert Syst. Appl. 62, 225–242 (2016). https://doi.org/10.1016/j.eswa.2016.06.024
Dabrowski, J.J., de Villiers, J.P.: Maritime piracy situation modelling with dynamic Bayesian networks. Inf. Fusion 23, 116–130 (2015). https://doi.org/10.1016/j.inffus.2014.07.001
Dabrowski, J.J., de Villiers, J.P.: A unified model for context-based behavioural modelling and classification. Expert Syst. Appl. 42(19), 6738–6757 (2015). https://doi.org/10.1016/j.eswa.2015.04.061
Dabrowski, J.J., de Villiers, J.P., Beyers, C.: Context-based behaviour modelling and classification of marine vessels in an abalone poaching situation. Eng. Appl. Artif. Intell. 64, 95–111 (2017). https://doi.org/10.1016/j.engappai.2017.06.005
Dabrowski, J.J., de Villiers, J.P., Beyers, C.: Naive Bayes switching linear dynamical system: a model for dynamic system modelling, classification, and information fusion. Inf. Fusion 42, 75–101 (2018). https://doi.org/10.1016/j.inffus.2017.10.002
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Hoy, M., Tu, Z., Dang, K., Dauwels, J.: Learning to predict pedestrian intention via variational tracking networks. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3132–3137, November 2018. https://doi.org/10.1109/ITSC.2018.8569641
Hug, R., Becker, S., Hbner, W., Arens, M.: Particle-based pedestrian path prediction using LSTM-MDL models. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2684–2691, November 2018. https://doi.org/10.1109/ITSC.2018.8569478
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint: arXiv:1412.6980 (2014)
Kooij, J.F.P., Englebienne, G., Gavrila, D.M.: Mixture of switching linear dynamics to discover behavior patterns in object tracks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 322–334 (2016). https://doi.org/10.1109/TPAMI.2015.2443801
Kooij, J.F.P., Schneider, N., Gavrila, D.M.: Analysis of pedestrian dynamics from a vehicle perspective. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 1445–1450, June 2014. https://doi.org/10.1109/IVS.2014.6856505
Kooij, J.F.P., Schneider, N., Flohr, F., Gavrila, D.M.: Context-based pedestrian path prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 618–633. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_40
Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S.: Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimed. 20(4), 985–996 (2018). https://doi.org/10.1109/TMM.2017.2759508
Minguez, R.Q., Alonso, I.P., Fernandez-Llorca, D., Sotelo, M.A.: Pedestrian path, pose, and intention prediction through Gaussian process dynamical models and pedestrian activity recognition. IEEE Trans. Intell. Transp. Syst., 1–12 (2018). https://doi.org/10.1109/TITS.2018.2836305
Murphy, K.P.: Switching Kalman filters. Technical report, Department of Computer Science, UC Berkeley (1998)
Ridel, D., Rehder, E., Lauer, M., Stiller, C., Wolf, D.: A literature review on the prediction of pedestrian behavior in urban scenarios. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3105–3112, November 2018. https://doi.org/10.1109/ITSC.2018.8569415
Saleh, K., Hossny, M., Nahavandi, S.: Intent prediction of pedestrians via motion trajectories using stacked recurrent neural networks. IEEE Trans. Intell. Veh. 3(4), 414–424 (2018). https://doi.org/10.1109/TIV.2018.2873901
Saleh, K., Hossny, M., Nahavandi, S.: Long-term recurrent predictive model for intent prediction of pedestrians via inverse reinforcement learning. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8, December 2018. https://doi.org/10.1109/DICTA.2018.8615854
Schneider, N., Gavrila, D.M.: Pedestrian path prediction with recursive Bayesian filters: a comparative study. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 174–183. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_18
Schulz, A.T., Stiefelhagen, R.: Pedestrian intention recognition using latent-dynamic conditional random fields. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 622–627, June 2015. https://doi.org/10.1109/IVS.2015.7225754
Volz, B., Behrendt, K., Mielenz, H., Gilitschenski, I., Siegwart, R., Nieto, J.: A data-driven approach for pedestrian intention estimation. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2607–2612, November 2016. https://doi.org/10.1109/ITSC.2016.7795975
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Dabrowski, J.J., de Villiers, J.P., Rahman, A., Beyers, C. (2019). Deep Learning and Statistical Models for Time-Critical Pedestrian Behaviour Prediction. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-36808-1_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36807-4
Online ISBN: 978-3-030-36808-1
eBook Packages: Computer ScienceComputer Science (R0)