Skip to main content

Spontaneous EEG Classification Using Complex Valued Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1142))

Included in the following conference series:

Abstract

Identification of spontaneous brain activity using the electroencephalography (EEG) requires information of the frequency spectrum and the spatial distribution. The complex valued neural network (CVNN) which uses complex weights and inputs has been shown higher performance for periodic data analysis, since spectrum information is represented by complex numbers. In spontaneous EEG analysis, the phase information depends on the onset of the recording, thus it is not informative. However, the conventional CVNN is not able to remove the phase information and extract amplitude spectrum efficiently. In this paper, we introduce two activation functions for CVNN to extract the amplitude spectrum directly, and classify spontaneous EEG. Our experimental results showed that the proposed method is higher classification performance than the conventional CVNN, and comparable to the convolutional neural network (CNN). Furthermore, the proposed method showed high performance when the number of hidden units is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenberg, I., Khaliq, Z.: Analysis of EEG using multilayer neural network with multi-valued neurons. In: 2018 IEEE Second International Conference on Data Stream Mining Processing, pp. 392–396 (2018)

    Google Scholar 

  2. Goldberger, A.L., et al.: Physiobank, PhysioToolkit, and PhysioNet. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hirose, A.: Complex valued neural network, 2 edn. Science (2016). (In Japanese)

    Google Scholar 

  6. Kim, T., Adal, T.: Approximation by fully complex multilayer perceptrons. Neural Comput. 15(7), 1641–1666 (2003)

    Article  Google Scholar 

  7. Nitta, T.: A back-propagation algorithm for complex numbered neural networks. In: Proceedings of 1993 International Conference on Neural Networks, vol. 2, pp. 1649–1652 (1993)

    Google Scholar 

  8. Peker, M., Sen, B., Delen, D.: A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J. Biomed. Health Inf. 20(1), 108–118 (2016)

    Article  Google Scholar 

  9. Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. IEEE Trans. Inf Technol. Biomed. 15(5), 737–746 (2011)

    Article  Google Scholar 

  10. Podmore, J.J., Breckon, T.P., Aznan, N.K.N., Connolly, J.D.: On the relative contribution of deep convolutional neural networks for SSVEP-based bio-signal decoding in BCI speller applications. IEEE Trans. Neural Syst. Rehabil. Eng. 27(4), 611–618 (2019)

    Article  Google Scholar 

  11. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  12. Sunaga, Y., Natsuaki, R., Hirose, A.: Proposal of complex-valued convolutional neural networks for similar land-shape discovery in interferometric synthetic aperture radar. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 340–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_31

    Chapter  Google Scholar 

  13. Trabelsi, C., et al.: Deep complex networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  14. Wolpaw, J., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice (English Edition), 1st edn. Oxford University Press, Oxford (2012)

    Google Scholar 

  15. Wu, R., Huang, T.: Learning of phase-amplitude-type complex-valued neural networks with application to signal coherence. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10634, pp. 91–99. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_10

    Chapter  Google Scholar 

  16. Zhang, J., Wu, Y.: A new method for automatic sleep stage classification. IEEE Trans. Biomed. Circuits Syst. 11(5), 1097–1110 (2017)

    Article  Google Scholar 

  17. Zhang, Z., Wang, H., Xu, F., Jin, Y.: Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 55(12), 7177–7188 (2017)

    Article  Google Scholar 

  18. Zheng, W.: Multichannel eeg-based emotion recognition via group sparse canonical correlation analysis. IEEE Trans. Cogn. Dev. Syst. 9(3), 281–290 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 17H01760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Washizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ikeda, A., Washizawa, Y. (2019). Spontaneous EEG Classification Using Complex Valued Neural Network. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36808-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36807-4

  • Online ISBN: 978-3-030-36808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics