Skip to main content

Sparse Graphic Attention LSTM for EEG Emotion Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1142))

Included in the following conference series:

Abstract

In this paper, a novel multichannel EEG emotion recognition method based on sparse graphic attention long short-term memory (SGA-LSTM) is proposed. The basic idea of SGA-LSTM is to adopt graph structure modeling EEG signals to enhance the discriminative ability of EEG channels carrying more emotion information while alleviate the importance of the EEG channels carrying less emotion information. To this end, we employ two graphic branches. One branch generates global features reflecting the intrinsic relationship between EEG channels and the other generates an attention vector guiding the global features to focus on specific EEG channels. Researches on brain emotion show that different brain regions may be related to different brain functions and the contribution of each EEG channel to one specific brain function are possibly sparse such that \(\ell _1\)-norm penalty is applied. Extensive experiments are conducted on our dry electrodes EEG database and MPED database. The experimental results show that the proposed method is superior to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  2. Dalgleish, T.: The emotional brain. Nat. Rev. Neurosci. 5(7), 583 (2004)

    Article  Google Scholar 

  3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  4. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2960–2967 (2013)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)

    Article  Google Scholar 

  7. Li, Y., Huang, J., Zhou, H., Zhong, N.: Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks. Appl. Sci. 7(10), 1060 (2017)

    Article  Google Scholar 

  8. Lin, D., Zhang, J., Li, J., Calhoun, V.D., Deng, H.W., Wang, Y.P.: Group sparse canonical correlation analysis for genomic data integration. BMC Bioinform. 14(1), 245 (2013)

    Article  Google Scholar 

  9. Lindquist, K.A., Barrett, L.F.: A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn. Sci. 16(11), 533–540 (2012)

    Article  Google Scholar 

  10. Long, M., Wang, J., Sun, J., Philip, S.Y.: Domain invariant transfer kernel learning. IEEE Trans. Knowl. Data Eng. 27(6), 1519–1532 (2015)

    Article  Google Scholar 

  11. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  12. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901 (2007)

    Article  MathSciNet  Google Scholar 

  13. Song, T., Zheng, W., Lu, C., Zong, Y., Zhang, X., Cui, Z.: MPED: a multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7, 12177–12191 (2019)

    Article  Google Scholar 

  14. Song, T., Zheng, W., Song, P., Cui, Z.: EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. (2018)

    Google Scholar 

  15. Tang, H., Liu, W., Zheng, W.L., Lu, B.L.: Multimodal emotion recognition using deep neural networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10637, pp. 811–819. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70093-9_86

    Chapter  Google Scholar 

  16. Thompson, B.: Canonical correlation analysis. Encyclopedia of Statistics in Behavioral Science (2005)

    Google Scholar 

  17. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: convolutional block attention module. In: The European Conference on Computer Vision (ECCV), September 2018

    Chapter  Google Scholar 

  18. Zhang, T., Zheng, W., Cui, Z., Zong, Y., Li, Y.: Spatial-temporal recurrent neural network for emotion recognition. IEEE Trans. Cybern. (99), 1–9 (2018)

    Google Scholar 

  19. Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7(3), 162–175 (2015)

    Article  Google Scholar 

  20. Zheng, W.: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis. IEEE Trans. Cogn. Dev. Syst. 9, 281–290 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1305200, in part by the National Natural Science Foundation of China under Grant 61921004, Grant 81971282, Grant 61572009, Grant 61902064, and Grant 61906094, and in part by the Fundamental Research Funds for the Central Universities under Grants 2242018K3DN01, Grant 2242019K40047, and Grant 30919011232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Zheng, W., Song, T., Zong, Y. (2019). Sparse Graphic Attention LSTM for EEG Emotion Recognition. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36808-1_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36807-4

  • Online ISBN: 978-3-030-36808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics