Skip to main content

On Explainable Flexible Fuzzy Recommender and Its Performance Evaluation Using the Akaike Information Criterion

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Abstract

In the paper, fuzzy recommender systems are proposed based on the novel method for nominal attribute coding. Several flexibility parameters - subjects to learning - are incorporated to their construction, allowing systems to better represent patterns encoded in data. The learning process does not affect the initial interpretable form of fuzzy recommenders rules. Using the Akaike Information Criterion allows evaluating the trade-off between a number of rules and interpretability which is crucial to provide proper explanations for users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagher, R.C., Hassanpour, H., Mashayekhi, H.: User trends modeling for a content-based recommender system. Expert Syst. Appl. 87, 209–219 (2017)

    Article  Google Scholar 

  2. Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)

    Article  Google Scholar 

  3. Bozdogan, H.: Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52(3), 345–370 (1987)

    Article  MathSciNet  Google Scholar 

  4. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19 (2016)

    Google Scholar 

  5. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)

    Article  Google Scholar 

  6. Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)

    Article  Google Scholar 

  7. Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)

    Article  Google Scholar 

  8. Ricci, F., Rokach, L., Shapira, B. (Eds.): Recommender Systems Handbook. Springer (2015)

    Google Scholar 

  9. Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)

    Article  Google Scholar 

  10. Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, New York (2002). https://doi.org/10.1007/978-3-7908-1802-4. Physica

    Book  MATH  Google Scholar 

  11. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76288-1

    Book  MATH  Google Scholar 

  12. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R.: Towards interpretability of the movie recommender based on a neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 752–762. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_66

    Chapter  Google Scholar 

  13. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R., Rutkowski, L.: A content-based recommendation system using neuro-fuzzy approach. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ) (2018)

    Google Scholar 

  14. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  15. Year, R., Martnez, L.: Fuzzy tools in recommender systems: a survey. Int. J. Comput. Intell. Syst. 10(1), 776–803 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

– This research was supported by the Polish National Science Center grants 2015/19/B/ST6/03179.

– The project financed under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence" in the years 2019-2022, project number 020/RID/2018/19, the amount of financing 12,000,000 PLN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Rutkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rutkowski, T., Łapa, K., Jaworski, M., Nielek, R., Rutkowska, D. (2019). On Explainable Flexible Fuzzy Recommender and Its Performance Evaluation Using the Akaike Information Criterion. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36808-1_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36807-4

  • Online ISBN: 978-3-030-36808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics