Abstract
In the paper, fuzzy recommender systems are proposed based on the novel method for nominal attribute coding. Several flexibility parameters - subjects to learning - are incorporated to their construction, allowing systems to better represent patterns encoded in data. The learning process does not affect the initial interpretable form of fuzzy recommenders rules. Using the Akaike Information Criterion allows evaluating the trade-off between a number of rules and interpretability which is crucial to provide proper explanations for users.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bagher, R.C., Hassanpour, H., Mashayekhi, H.: User trends modeling for a content-based recommender system. Expert Syst. Appl. 87, 209–219 (2017)
Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)
Bozdogan, H.: Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52(3), 345–370 (1987)
Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19 (2016)
Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)
Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)
Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)
Ricci, F., Rokach, L., Shapira, B. (Eds.): Recommender Systems Handbook. Springer (2015)
Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)
Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, New York (2002). https://doi.org/10.1007/978-3-7908-1802-4. Physica
Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76288-1
Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R.: Towards interpretability of the movie recommender based on a neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 752–762. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_66
Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R., Rutkowski, L.: A content-based recommendation system using neuro-fuzzy approach. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ) (2018)
Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)
Year, R., Martnez, L.: Fuzzy tools in recommender systems: a survey. Int. J. Comput. Intell. Syst. 10(1), 776–803 (2017)
Acknowledgments
– This research was supported by the Polish National Science Center grants 2015/19/B/ST6/03179.
– The project financed under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence" in the years 2019-2022, project number 020/RID/2018/19, the amount of financing 12,000,000 PLN.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rutkowski, T., Łapa, K., Jaworski, M., Nielek, R., Rutkowska, D. (2019). On Explainable Flexible Fuzzy Recommender and Its Performance Evaluation Using the Akaike Information Criterion. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_78
Download citation
DOI: https://doi.org/10.1007/978-3-030-36808-1_78
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36807-4
Online ISBN: 978-3-030-36808-1
eBook Packages: Computer ScienceComputer Science (R0)