Skip to main content

Acoustic Emissions Detection and Ranging of Cracks in Metal Tanks Using Deep Learning

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2019)

Abstract

This work proposes a new method for the estimation of the distance of cracks in pressure metal tanks. This method is obtained coupling the acoustic emissions analysis and the deep learning techniques. Using a 2D CNN we are able to estimate the distance between a crack and an acoustic emission piezoelectric sensor. The CNN is trained on images representing the spectrogram of acoustic emission located at distances of 2, 20, 40, 60, 80, 100, 120 and 140 cm. We obtained a RMSE of 2.54 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attuazione della direttiva 97/23/CE in materia di attrezzature a pressione. dlgs 93/2000 Italian Legislation

    Google Scholar 

  2. Cardarilli GC, Di Nunzio L, Massimi F, Fazzolari R, De Petris C, Augugliaro G, Mennuti C (2018) A wireless sensor node for acoustic emission non-destructive testing. Lect Notes Electr Eng

    Google Scholar 

  3. Bechhoefer E, Qu Y, Zhu J, He D (2013) Signal processing techniques to improve an acoustic emissions sensor. In: Proceedings of the annual conference of the prognostics and health management society. pp 581–58

    Google Scholar 

  4. Grosse Christian U, Ohtsu M (eds) (2008) Acoustic emission testing. Springer Science & Business Media, Berlin

    Google Scholar 

  5. Akyildiz Ian F et al (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422

    Article  Google Scholar 

  6. Perumalla V, Ramanjaneyulu BS, Kolli A (2017) Simulation study of topological structures and node coordinations for deterministic WSN with TSCH. Int J Inform Vis 1(4)

    Google Scholar 

  7. Giardino D, Matta M, Spanò S (2019) A feature extractor IC for acoustic emission non-destructive testing. Int J Adv Sci Eng Inf Technol 9(2):538–543

    Article  Google Scholar 

  8. Giuliano R, Mazzenga F, Neri A, Vegni AM (2017) Security access protocols in IoT capillary networks. IEEE Internet Things J 4(3):645–657

    Article  Google Scholar 

  9. Riqualificazione serbatoi GPL con metodo EA, Istituto nazionale per l’assicurazione contro gli infortuni sul lavoro (INAIL) (2019). https://www.inail.it/cs/internet/attivita/ricerca-e-tecnologia/certificazione-verifica-e-innovazione/certificazione/riqualificazione-serbatoi-gpl-con-metodo-ea.html

  10. Ni Q-Q, Iwamoto M (2002) Wavelet transform of acoustic emission signals in failure of model composites. Eng Fract Mech 69(6):717–728

    Article  Google Scholar 

  11. Lu Y (2017) Industry 4.0: A survey on technologies, applications and open research issues. J Ind Inf Integr 6:1–10

    Google Scholar 

  12. Matta M, Cardarilli GC, Di Nunzio L, Fazzolari R, Giardino D, Nannarelli A, Re M, Spanò S (2019) A reinforcement learning based QAM/PSK symbol synchronizer. IEEE Access

    Google Scholar 

  13. Cardarilli GC, Di Nunzio L, Fazzolari R, Nannarelli A, Re M, Spano S (2019) N-dimensional approximation of euclidean distance. IEEE Trans Circuits Syst II Express Briefs

    Google Scholar 

  14. Cardarilli GC, Di Nunzio L, Fazzolari R, Re M, Spano S (2019) AW-SOM, an algorithm for high-speed learning in hardware self-organizing maps. IEEE Trans Circuits Syst II: Express Briefs

    Google Scholar 

  15. Cardarilli GC, Di Nunzio L, Fazzolari R, Giardino D, Matta M, Re M, Silvestri F, Spanò S (2019) Efficient ensemble machine learning implementation on FPGA using partial reconfiguration. Lect Notes Electr Eng 550:253–259

    Article  Google Scholar 

  16. Hordri NF, Yuhaniz SS, Shamsuddin SM (2016) Deep learning and its applications: a review. In: Postgraduate annual research on informatics seminar 2016, Universiti Teknologi Malaysia

    Google Scholar 

  17. Russakovsky O et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  18. Zhu L, Peng Z, McClellan J (2018) Deep learning for seismic event detection of earthquake aftershocks. In: 2018 52nd asilomar conference on signals, systems, and computers, IEEE

    Google Scholar 

  19. Zhang J et al (2019) Fine-grained ECG classification based on deep CNN and online decision fusion. Preprint at arXiv:1901.06469

  20. ASTM E-976, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, ASTM International

    Google Scholar 

  21. Burrascano P, Laureti S, Senni L, Ricci M (2018) Pulse compression in nondestructive testing applications: reduction of near sidelobes exploiting reactance transformation. IEEE Trans Circuits Syst I Regul Pap (99):1–11. https://doi.org/10.1109/tcsi.2018.2862868

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Di Nunzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardarilli, G.C. et al. (2020). Acoustic Emissions Detection and Ranging of Cracks in Metal Tanks Using Deep Learning. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2019. Lecture Notes in Electrical Engineering, vol 627. Springer, Cham. https://doi.org/10.1007/978-3-030-37277-4_37

Download citation

Publish with us

Policies and ethics