Skip to main content

An Intrusion Detection Method Based on Hierarchical Feature Learning and Its Application

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11982))

Included in the following conference series:

  • 1216 Accesses

Abstract

Network traffic classification, which generally adopts traditional machine learning methods, is one of the most important methods in intrusion detection. However, how to design a feature set that accurately characterizes network traffic is still a problem. This paper proposes an intrusion detection method based on hierarchical feature learning, which first learns the byte-level features of network traffic through deep convolutional neural networks and then learns session-level features using Stacked Denoising Autoencoder. Experiments show that this method can obtain very important characteristics in network traffic, whose precision and false alarm rate are optimized by 0.41% compared to the CNN-only approach, so as to effectively improve the precision of network traffic classification and reduce the false alarm rate. The method can meet the requirements of network intrusion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu, Y., Long, J., Liu, F., Cai, Z.: Machine learning combining with visualization for intrusion detection: a survey. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS (LNAI), vol. 9880, pp. 239–249. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45656-0_20

    Chapter  Google Scholar 

  2. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, USA, pp. 305–316. IEEE Press (2010)

    Google Scholar 

  3. Jiang, N., Li, B., Wan, T., Liu, L.: C-POEM: comprehensive performance optimization evaluation model for wireless sensor networks. Soft. Comput. 21(12), 3377–3385 (2017)

    Article  Google Scholar 

  4. Jiang, N., Xiao, X., Liu, L.: Localization scheme for wireless sensor networks based on “shortcut” constraint. Ad Hoc Sens. Wirel. Netw. 26(1–4), 1–19 (2015)

    Google Scholar 

  5. Chen, J., Qi, Y.: Intrusion detection method based on deep learning. J. Jiangsu Univ. Sci. Technol. (Natural Science Edition) 31(06), 795–800 (2017)

    Google Scholar 

  6. Seo, S., Park, S., Kim, J.: Improvement of network intrusion detection accuracy by using restricted Boltzmann machine. In: 2016 8th International Conference on Computational Intelligence and Communication Networks, Tehri, India, pp. 413–417. IEEE Press (2016)

    Google Scholar 

  7. Yang, X., Gao, L., Wang, H., et al.: A cooperative deep belief network for intrusion detection. In: 2018 Sixth International Conference on Advanced Cloud and Big Data, Lanzhou, China, pp. 230–236. IEEE Press (2018)

    Google Scholar 

  8. Naseer, S., Saleem, Y., Khalid, S., et al.: Enhanced network anomaly detection based on deep neural networks. IEEE Access 6(99), 48231–48246 (2018)

    Article  Google Scholar 

  9. Javaid, A., Niyaz, Q., Sun, W., et al.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies, New York City, United States, pp. 21–26. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (2016)

    Google Scholar 

  10. Tavallaee, M., Bagheri, E., Lu, W., et al.: A detailed analysis of the KDD CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, pp. 1–6. IEEE Press (2009)

    Google Scholar 

  11. Verma, A., Ranga, V.: Statistical analysis of CIDDS-001 dataset for network intrusion detection systems using distance-based machine learning. Procedia Comput. Sci. 125, 709–716 (2018)

    Article  Google Scholar 

  12. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)

    Article  Google Scholar 

  13. Yin, C., Zhu, Y., Fei, J., et al.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017)

    Article  Google Scholar 

  14. Li, P., Chen, Z., et al.: An improved stacked auto-encoder for network traffic flow classification. IEEE Netw. 32, 22–27 (2018)

    Article  Google Scholar 

  15. Yao, Y., Wei, Y., Gao, F., et al.: Anomaly intrusion detection approach using hybrid MLP/CNN neural network. In: 6th International Conference on Intelligent Systems Design and Applications, Jinan, China, pp. 1095–1102. IEEE Press (2006)

    Google Scholar 

  16. Erfani, S., Rajasegarar, S., Karunasekera, S., et al.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  17. Eesa, A., Orman, Z., Brifcani, A.: A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems. Expert Syst. Appl. 42(5), 2670–2679 (2015)

    Article  Google Scholar 

  18. Wang, W., Sheng, Y., Wang, J., et al.: HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806 (2018)

    Article  Google Scholar 

  19. Yu, Y., Long, J., Cai, Z.: Session-based network intrusion detection using a deep learning architecture. In: Torra, V., Narukawa, Y., Honda, A., Inoue, S. (eds.) MDAI 2017. LNCS (LNAI), vol. 10571, pp. 144–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67422-3_13

    Chapter  Google Scholar 

  20. Rodriguez, J., Perez, A., Lozano, J.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 569–575 (2010)

    Article  Google Scholar 

  21. Nair, V., Hinton, G.E.: Stacked denoising autoencoders: rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, pp. 807–814. Omnipress (2010)

    Google Scholar 

  22. The CTU-13 Dataset: A Labeled Dataset with Botnet, Normal and Background traffic. https://www.stratosphereips.org/datasets-ctu13

  23. Ali, S., Hadi, S., Mahbod, T., et al.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China, under Grant No. 61762037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunyi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, X., Jiang, X., Wang, W., Wang, B., Wan, T., Yang, H. (2019). An Intrusion Detection Method Based on Hierarchical Feature Learning and Its Application. In: Vaidya, J., Zhang, X., Li, J. (eds) Cyberspace Safety and Security. CSS 2019. Lecture Notes in Computer Science(), vol 11982. Springer, Cham. https://doi.org/10.1007/978-3-030-37337-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37337-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37336-8

  • Online ISBN: 978-3-030-37337-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics