Skip to main content

Public Transport Smart Card Data Analysis Using Tucker Decomposition

  • Conference paper
  • First Online:
Proceedings of the 23rd Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2019)

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 12))

Included in the following conference series:

  • 358 Accesses

Abstract

With the development of information and communication technology, various kinds of data have been collected and accumulated in large quantities. Along with this, many methods for analyzing large-scale data have been proposed. This study extracts travel characteristics from smart card data of a private rail system using Tucker decomposition, a valid method for analyzing high order data. Applying Tucker decomposition to a 6th-order tensor dataset (weatherday of the weektime of daypassenger typeorigin stationdestination station), the results reveal what kind of users move from which station to which station, in what weather, on which days of the week, and at what time of day. Moreover, the dataset of 6,489,600 elements was compressed to 1,440 elements with the suggested approach, and the main travel patterns of passengers could be confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hofleitner, A., Herring, R., Bayen, A.: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning. Transp. Res. Part B 46, 1097–1122 (2012)

    Article  Google Scholar 

  2. Vij, A., Shankari, K.: When is big data enough? Implications of using GPS-based surveys for travel demand analysis. Transp. Res. Part C 56, 446–462 (2015)

    Article  Google Scholar 

  3. Simoncini, M., Taccari, L., Sambo, F., Bravi, L., Salti, S., Lori, A.: Vehicle classification from low-frequency GPS data with recurrent neural networks. Transp. Res. Part C 91, 176–191 (2018)

    Article  Google Scholar 

  4. Jenelius, E., Koutsopoulos, H.N.: Travel time estimation for urban road networks using low frequency probe vehicle data. Transp. Res. Part B 53, 64–81 (2013)

    Article  Google Scholar 

  5. Yang, H., Wang, Z., Xie, K., Dai, D.: Use of ubiquitous probe vehicle data for identifying secondary crashes. Transp. Res. Part C 82, 138–160 (2017)

    Article  Google Scholar 

  6. White, K.M., Hyde, M.K., Walsh, S.P., Watson, B.: Mobile phone use while driving: an investigation of the beliefs influencing drivers’ hands-free and hand-held mobile phone use. Transp. Res. Part F 13, 9–20 (2010)

    Article  Google Scholar 

  7. Jarv, O., Ahas, R., Witlox, F.: Understanding monthly variability in human activity spaces: a twelve-month study using mobile phone call detail records. Transp. Res. Part C 38, 122–135 (2014)

    Article  Google Scholar 

  8. Choudhary, P., Velaga, N.R.: Modelling driver distraction effects due to mobile phone use on reaction time. Transp. Res. Part C 77, 351–365 (2017)

    Article  Google Scholar 

  9. Ma, X., Wu, Y.J., Wang, Y., Chen, F., Liu, J.: Mining smart card data for transit riders’ travel patterns. Transp. Res. Part C 36, 1–12 (2013)

    Article  Google Scholar 

  10. Zhong, C., Manley, E., Arisona, S.M., Batty, M., Schmitt, G.: Measuring variability of mobility patterns from multiday smart-card data. J. Comput. Sci. 9, 125–130 (2015)

    Article  Google Scholar 

  11. Alsger, A., Tavassoli, A., Mesbah, M., Ferreira, L., Hickman, M.: Public transport trip purpose inference using smart card fare data. Transp. Res. Part C 87, 123–137 (2018)

    Article  Google Scholar 

  12. Wang, Z., Hu, Y., Zhu, P., Qin, Y., Jia, L.: Ring aggregation pattern of metro passenger trips: a study using smart card data. Phys. A 491, 471–479 (2018)

    Article  Google Scholar 

  13. Medina, S.A.O.: Inferring weekly primary activity patterns using public transport smatr card data and a household travel survey. Travel Behav. Soc. 12, 93–101 (2018)

    Article  Google Scholar 

  14. Zhang, Y., Martens, K., Long, Y.: Revealing group travel behavior patterns with public transit smart card data. Travel Behav. Soc. 10, 42–52 (2018)

    Article  Google Scholar 

  15. Zhao, Z., Koutsopoulos, H.N., Zhao, J.: Individual mobility prediction using transit smart card data. Transp. Res. Part C 89, 19–34 (2018)

    Article  Google Scholar 

  16. Simsekli, U., Virtanen, T., Cemgil, A.T.: Non-negative tensor factorization models for Bayesian audio processing. Digit. Sig. Proc. 47, 178–191 (2015)

    Article  MathSciNet  Google Scholar 

  17. Vazifehdan, M., Moattar, M.H., Jalali, M.: A hybrid Bayesian network and tensor factorization approach for missing value imputation to improve breast cancer recurrence prediction. J. King Saud Univ. Comput. Inf. Sci. 31, 175–184 (2018)

    Google Scholar 

  18. Fan, H., Kuang, G., Qiao, L.: Fast tensor principal component analysis via proximal alternating direction method with vectorized technique. Appl. Math. 8, 77–86 (2017)

    Article  Google Scholar 

  19. Taneja, A., Arora, A.: Cross domain recommendation using multidimensional tensor factorization. Expert Syst. Appl. 92, 304–316 (2018)

    Article  Google Scholar 

  20. Yao, D., Yu, C., Jin, H., Ding, Q.: Human mobility synthesis using matrix and tensor factorizations. Inf. Fusion 23, 25–32 (2015)

    Article  Google Scholar 

  21. Han, Y., Moutarde, F.: Analysis of large-scale traffic dynamics in an urban transportation network using non-negative tensor factorization. Int. J. Intell. Transp. Syst. Res. 14, 36–49 (2014)

    Google Scholar 

  22. Sun, L., Axhausen, K.: Understanding urban mobility patterns with a probabilistic tensor factorization framework. Transp. Res. Part B 91, 511–524 (2016)

    Article  Google Scholar 

  23. Chen, X., He, Z., Wang, J.: Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition. Transp. Res. Part C 86, 59–77 (2018)

    Article  Google Scholar 

  24. Feng, B., Lu, W., Sun, W., Huang, J., Shi, Y.Q.: Robust image watermarking based on tucker decomposition and adaptive-lattice quantization index modulation. Sig. Process. Image Commun. 41, 1–14 (2016)

    Article  Google Scholar 

  25. Wang, L., Bai, J., Wu, J., Jeon, G.: Hyperspectral image compression based on lapped transform and tucker decomposition. Sig. Process. Image Commun. 36, 63–69 (2015)

    Article  Google Scholar 

  26. Yin, W., Ma, Z.: LE & LLE regularized nonnegative tucker decomposition for clustering of high dimensional datasets. Neurocomputing 364, 77–94 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors especially thank Takamastu-Kotohira Electric Railroad Co. in Takamatsu City, Kagawa Prefecture, Japan for providing smart card data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mio Hosoe or Masashi Kuwano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosoe, M., Kuwano, M. (2020). Public Transport Smart Card Data Analysis Using Tucker Decomposition. In: Sato, H., Iwanaga, S., Ishii, A. (eds) Proceedings of the 23rd Asia Pacific Symposium on Intelligent and Evolutionary Systems. IES 2019. Proceedings in Adaptation, Learning and Optimization, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-37442-6_6

Download citation

Publish with us

Policies and ethics