Skip to main content

A Computational Framework Towards Medical Image Explanation

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems (KR4HC 2019, TEAAM 2019)

Abstract

In this paper, a unified computational framework towards medical image explanation is proposed to promote the ability of computers on understanding and interpreting medical images. Four complementary modules are included, such as the construction of Medical Image-Text Joint Embedding (MITE) based on large-scale medical images and related texts; a Medical Image Semantic Association (MISA) mechanism based on the MITE multimodal knowledge representation; a Hierarchical Medical Image Caption (HMIC) module that is visually understandable to radiologists; and a language-independent medical imaging report generation prototype system by integrating the HMIC and transfer learning method. As an initial study of automatic medical image explanation, preliminary experiments were carried out to verify the feasibility of the proposed framework, including the extraction of large scale medical image-text pairs, semantic concept detection from medical images, and automatic medical imaging reports generation. However, there is still a great challenge to produce medical image interpretations clinically usable, and further research is needed to empower machines explaining medical images like a human being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Interagency Working Group on Medical Imaging Committee on Science, National Science And Technology Council, Roadmap for medical imaging research and development, 12 (2017)

    Google Scholar 

  2. Ma, Q., Kong, D.: A new variational model for joint restoration and segmentation based on the Mumford-Shah model. J. Vis. Commun. Image Represent. 53, 224–234 (2018)

    Article  Google Scholar 

  3. Wang, X., Peng, Y., Lu, L., et al.: ChestX-ray8.: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE CVPR 2017, pp. 2097–2106 (2017)

    Google Scholar 

  4. Demnerfushman, D., Kohli, M.D., Rosenman, M.B., et al.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inform. Assoc. Jamia 23(2), 304–310 (2016)

    Google Scholar 

  5. Iii, S.G.A., Mclennan, G., Bidaut, L., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 9–15 (2011)

    Google Scholar 

  6. Eickhoff, C., Schwall, I., Garca íSeco de Herrera, A., Müller, H.: Overview of ImageCLEFcaption 2017 - the image caption prediction and concept extraction tasks to understand biomedical images. In: CLEF 2017 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Dublin, Ireland (2017)

    Google Scholar 

  7. Garca íSeco de Herrera, A., Eickhoff, C., Andrearczyk, V., Müller, H.: Overview of the ImageCLEF 2018 caption prediction tasks. In: CLEF 2018 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Avignon, France (2018)

    Google Scholar 

  8. Pelka, O., Friedrich, C.M., Garca íSeco de Herrera, A., Müller, H.: Overview of the ImageCLEFmed 2019 concept detection task. In: CLEF 2019 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Lugano, Switzerland (2019). ISSN 1613-0073

    Google Scholar 

  9. Pelka, O., Koitka, S., Rückert, J., Nensa, F., Friedrich, C.M.: Radiology objects in COntext (ROCO): a multimodal image dataset. In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT -2018. LNCS, vol. 11043, pp. 180–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_20

    Chapter  Google Scholar 

  10. Wang, X., Zhang, Y., Guo, Z., Li, J.: Identifying concepts from medical images via transfer learning and image retrieval. Math. Biosci. Eng. 16(4), 1978–1991 (2019)

    Google Scholar 

  11. Shin, H., Roberts, K., Lu, L., et al.: Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. In: Computer Vision and Pattern Recognition, pp. 2497–2506 (2016)

    Google Scholar 

  12. Zhou, C., Mao, Y., Wang, X.: Topic-specific image caption generation. In: Sun, M., Wang, X., Chang, B., Xiong, D. (eds.) CCL/NLP-NABD -2017. LNCS (LNAI), vol. 10565, pp. 321–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69005-6_27

    Chapter  Google Scholar 

  13. Krause, J., Johnson, J., Krishna, R., Li, F.: A hierarchical approach for generating descriptive image paragraphs. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  14. Liu, C., Wang, C., Sun, F., et al: Image2Text: a multimodal image captioner. In: ACM multimedia, pp. 746–748 (2016)

    Google Scholar 

  15. You, Q., Jin, H., Wang, Z., et al: Image captioning with semantic attention. In: Computer Vision and Pattern Recognition, pp. 4651–4659 (2016)

    Google Scholar 

  16. Liang, X., Hu, Z., Zhang, H., Gan, C., Xing, E.P.: Recurrent topic-transition GAN for visual paragraph generation. In: The IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  17. Xu, K., Ba, J., Kiros, R., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2016)

    Google Scholar 

  18. Hasan, S.A., Ling, Y., Liu, J., Sreenivasan, R., Anand, S., Arora, T.R., Datla, V., Lee, K., Qadir, A., Swisher, C., Farri, O.: Attention-based medical caption generation with image modality classification and clinical concept mapping. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 224–230. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98932-7_21

    Chapter  Google Scholar 

  19. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: MDNet: a semantically and visually interpretable medical image diagnosis network, pp. 3549–3557 (2017)

    Google Scholar 

  20. Jing, B., Xie, P., Eric, X.: On the automatic generation of medical imaging reports. In: Conference 2018, CVPR, pp. 2577–2586, Melbourne, Australia (2018)

    Google Scholar 

  21. Wang, X., Peng, Y., Lu, L., et al: TieNet: text-image embedding network for common thorax disease classification and reporting in chest X-rays. In: Conference 2018, CVPR (2018)

    Google Scholar 

  22. Kisilev, P., Walach, E., Barkan, E., et al.: From medical image to automatic medical report generation. IBM J. Res. Dev. 59(2/3), 2:1–2:7 (2015) https://doi.org/10.1147/JRD.2015.2393193

  23. Hsu, W., Glass, J.: Disentangling by partitioning: a representation learning framework for multimodal sensory data, p.1805. arXiv (2018)

    Google Scholar 

  24. Angelov, P.P., Gu, X.: Deep rule based classifier with human-level performance and characteristics. Inf. Sci. 463–464, 196–213 (2018)

    Article  Google Scholar 

  25. Gu, X., Angelov, P.P.: Semi-supervised deep rule-based approach for image classification. Appl. Soft Comput. 68, 53–68 (2018)

    Article  Google Scholar 

  26. The Building Blocks of Interpretability Homepage. https://distill.pub/2018/building-blocks/. Accessed 30 Sep 2019

  27. LUCID Homepage. https://github.com/tensorflow/lucid. Accessed 30 Sep 2019

  28. MetaMap Homepage. https://metamap.nlm.nih.gov/. Accessed 30 Sep 2019

  29. Lux, M., Chatzichristofis, S.A.: Lire: Lucene image retrieval: an extensible Java CBIR library. In: Proceedings of the 16th ACM International Conference on Multimedia. British Columbia, Canada (2008)

    Google Scholar 

  30. Guo, Z., Wang, X., Zhang, Y., Li, J.: ImageSem at ImageCLEFmed caption 2019 task: a two-stage medical concept detection strategy. In: CLEF 2019 Working Notes. CEUR Workshop Proceedings, CEUR-WS.org, Lugano, Switzerland (2019)

    Google Scholar 

  31. Zhang, Y.: Automatic generation of medical imaging report generation based on deep learning, Peking Union Medical College (2019)

    Google Scholar 

  32. Demner-Fushman, D., Antani, S., Simpson, M., et al.: Design and development of a multimodal biomedical information retrieval system. J. Comput. Sci. Eng. 6(2), 168–177 (2012)

    Article  Google Scholar 

  33. Papineni, K., Roukos, S., Ward, T., et al.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  34. Denkowski, M., Lavie, A.: Meteor universal: language specific translation evaluation for any target language. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 376–380 (2014)

    Google Scholar 

  35. Lin, C.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches out: Proceedings of the ACL-04 Workshop, vol. 8, Barcelona, Spain (2004)

    Google Scholar 

  36. Vedantam, R., Zitnick, C.L., Parikh, D.: Cider: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (Grant No. 2018-I2M-AI-016, Grant No. 2017PT63010 and Grant No. 2018PT33024); the National Natural Science Foundation of China (Grant No. 81601573 and Grant No. 61906214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Zhang, Y., Guo, Z., Li, J. (2019). A Computational Framework Towards Medical Image Explanation. In: Marcos, M., et al. Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. KR4HC TEAAM 2019 2019. Lecture Notes in Computer Science(), vol 11979. Springer, Cham. https://doi.org/10.1007/978-3-030-37446-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37446-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37445-7

  • Online ISBN: 978-3-030-37446-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics