Skip to main content

Clinical Guidelines: A Crossroad of Many Research Areas. Challenges and Opportunities in Process Mining for Healthcare

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2019)

Abstract

Clinical Guidelines, medical protocols, and other healthcare indications, cover a significant slice of physicians daily routine, as they are used to support clinical choices also with relevant legal implications. On the one hand, informatics have proved to be a valuable mean for providing formalisms, methods, and approaches to extend clinical guidelines for better supporting the work performed in the healthcare domain. On the other hand, due to the different perspectives that can be considered for addressing similar problems, it lead to an undeniable fragmentation of the field. It may be argued that such fragmentation did not help to propose a practical, accepted, and extensively adopted solutions to assist physicians. As in Process Mining as a general field, Process Mining for Healthcare inherits the requirement of Conformance Checking. Conformance Checking aims to measure the adherence of a particular (discovered or known) process with a given set of data, or vice-versa. Due to the intuitive similarities in terms of challenges and problems to be faced between conformance checking and clinical guidelines, one may be tempted to expect that the fragmentation issue will naturally arise also in the conformance checking field. This position paper is a first step on the direction to embrace experience, lessons learnt, paradigms, and formalisms globally derived from the clinical guidelines challenge. We argue that such new focus, joint with the even growing notoriety and interest in PM4HC, might allow more physicians to make the big jump from user to protagonist becoming more motivated and proactive in building a strong multidisciplinary community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  2. Anani, N., et al.: Applying openEHR’s Guideline Definition Language to the SITS international stroke treatment registry: a European retrospective observational study. BMC Med. Inform. Decis. Mak. 17(1), 7 (2017)

    Article  Google Scholar 

  3. Anselma, L., Piovesan, L., Terenziani, P.: Temporal detection and analysis of guideline interactions. Artif. Intell. Med. 76, 40–62 (2017)

    Article  Google Scholar 

  4. Beale, T., et al.: openEHR Task Planning Specification (2017). https://specifications.openehr.org/releases/PROC/latest/task_planning.html

  5. Bilici, E., Despotou, G., Arvanitis, T.N.: The use of computer-interpretable clinical guidelines to manage care complexities of patients with multimorbid conditions: a review. Digit Health 4 (2018)

    Google Scholar 

  6. Binder, M., et al.: On analyzing process compliance in skin cancer treatment: an experience report from the evidence-based medical compliance cluster (EBMC\(^{2}\)). In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 398–413. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_26

    Chapter  Google Scholar 

  7. Boxwala, A.A., et al.: GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J. Biomed. Inform. 37(3), 147–161 (2004)

    Article  Google Scholar 

  8. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_19

    Chapter  Google Scholar 

  9. Chen, C., Chen, K., Hsu, C.Y., Chiu, W.T., Li, Y.C.J.: A guideline-based decision support for pharmacological treatment can improve the quality of hyperlipidemia management. Comput. Methods Progr. Biomed. 97(3), 280–285 (2010)

    Article  Google Scholar 

  10. Ciccarese, P., Caffi, E., Quaglini, S., Stefanelli, M.: Architectures and tools for innovative Health Information Systems: the Guide Project. Int. J. Med. Inform. 74(7–8), 553–562 (2005)

    Article  Google Scholar 

  11. De Bleser, L., Depreitere, R., De Waele, K., Vanhaecht, K., Vlayen, J., Sermeus, W.: Defining pathways. J. Nurs. Manag. 14(7), 553–563 (2006)

    Article  Google Scholar 

  12. Dixon, B.E., et al.: A pilot study of distributed knowledge management and clinical decision support in the cloud. Artif. Intell. Med. 59(1), 45–53 (2013)

    Article  Google Scholar 

  13. Fdez-Olivares, J., Onaindia, E., Castillo, L., Jordan, J., Cozar, J.: Personalized conciliation of clinical guidelines for comorbid patients through multi-agent planning. Artif. Intell. Med. 96, 167–186 (2018)

    Article  Google Scholar 

  14. Fernández-Llatas, C., Meneu, T., Traver, V., Benedi, J.M.: Applying evidence-based medicine in telehealth: an interactive pattern recognition approximation. Int. J. Environ. Res. Public Health 10(11), 5671–5682 (2013)

    Article  Google Scholar 

  15. Ghasemi, M., Amyot, D.: Process mining in healthcare: a systematised literature review. Int. J. Electron. Healthc. 9, 60 (2016)

    Article  Google Scholar 

  16. Goldberg, H.S., et al.: A highly scalable, interoperable clinical decision support service. J. Am. Med. Inform. Assoc. (JAMIA) 21(e1), e55–e62 (2014)

    Article  Google Scholar 

  17. Gonzalez-Ferrer, A., ten Teije, A., Fdez-Olivares, J., Milian, K.: Automated generation of patient-tailored electronic care pathways by translating computer-interpretable guidelines into hierarchical task networks. Artif. Intell. Med. 57(2), 91–109 (2013)

    Article  Google Scholar 

  18. Gooch, P., Roudsari, A.: Computerization of workflows, guidelines, and care pathways: a review of implementation challenges for process-oriented health information systems. J. Am. Med. Inform. Assoc. 18(6), 738–748 (2011)

    Article  Google Scholar 

  19. Grando, M.A., Glasspool, D., Fox, J.: A formal approach to the analysis of clinical computer-interpretable guideline modeling languages. Artif. Intell. Med. 54(1), 1–13 (2012)

    Article  Google Scholar 

  20. Greenes, R.A., Bates, D.W., Kawamoto, K., Middleton, B., Osheroff, J., Shahar, Y.: Clinical decision support models and frameworks: seeking to address research issues underlying implementation successes and failures. J. Biomed. Inform. 78, 134–143 (2018)

    Article  Google Scholar 

  21. Gurgen Erdogan, T., Tarhan, A.: Systematic mapping of process mining studies in healthcare. IEEE Access 6, 1 (2018)

    Article  Google Scholar 

  22. Ibanez-Sanchez, G., et al.: Toward value-based healthcare through interactive process mining in emergency rooms: the stroke case. Int. J. Environ. Res. Public Health 16(10), 1783 (2019)

    Article  Google Scholar 

  23. Institute of Medicine: Clinical Practice Guidelines We Can Trust. The National Academies Press, Washington, DC (2011)

    Google Scholar 

  24. Jafarpour, B., Abidi, S.R., Woensel, W.V., Abidi, S.S.R.: Execution-time integration of clinical practice guidelines to provide decision support for comorbid conditions. Artif. Intell. Med. 94, 117–137 (2019)

    Article  Google Scholar 

  25. Johnson, O.A., Ba Dhafari, T., Kurniati, A., Fox, F., Rojas, E.: The ClearPath method for care pathway process mining and simulation. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 239–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_19

    Chapter  Google Scholar 

  26. Kawamoto, K., et al.: Multi-national, multi-institutional analysis of clinical decision support data needs to inform development of the HL7 virtual medical record standard. AMIA Annu. Symp. Proc. 2010, 377–381 (2010)

    Google Scholar 

  27. Kawamoto, K., Greenes, R.A.: The role of standards: what we can expect and when. In: Greenes, R.A. (ed.) Clinical Decision Support, chap. 21, 2nd edn, pp. 599–615. Academic Press, Oxford (2014)

    Chapter  Google Scholar 

  28. Kaymak, U., Mans, R., van de Steeg, T., Dierks, M.: On process mining in health care. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1859–1864 (2012)

    Google Scholar 

  29. Kurniati, A.P., Johnson, O., Hogg, D., Hall, G.: Process mining in oncology: a literature review. In: 2016 6th International Conference on Information Communication and Management (ICICM), pp. 291–297 (2016)

    Google Scholar 

  30. Lenkowicz, J., et al.: Assessing the conformity to clinical guidelines in oncology: an example for the multidisciplinary management of locally advanced colorectal cancer treatment. Manag. Decis. 56(10), 2172–2186 (2018)

    Article  Google Scholar 

  31. Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B., Moleman, A.J.: Process mining in healthcare: data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) KR4HC/ProHealth - 2012. LNCS (LNAI), vol. 7738, pp. 140–153. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36438-9_10

    Chapter  Google Scholar 

  32. Marco-Ruiz, L., Moner, D., Maldonado, J.A., Kolstrup, N., Bellika, J.G.: Archetype-based data warehouse environment to enable the reuse of electronic health record data. Int. J. Med. Inform. 84(9), 702–714 (2015)

    Article  Google Scholar 

  33. Marcos, M., Maldonado, J.A., Martínez-Salvador, B., Boscá, D., Robles, M.: Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility. J. Biomed. Inform. 46(4), 676–689 (2013)

    Article  Google Scholar 

  34. Martínez-Salvador, B., Marcos, M.: Supporting the refinement of clinical process models to computer-interpretable guideline models. Bus. Inf. Syst. Eng. 58(5), 355–366 (2016)

    Article  Google Scholar 

  35. Mulyar, N., van der Aalst, W.M., Peleg, M.: A pattern-based analysis of clinical computer-interpretable guideline modeling languages. J. Am. Med. Inform. Assoc. 14(6), 781–787 (2007)

    Article  Google Scholar 

  36. Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining - Comparing Observed and Modeled Processes, vol. 270. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49451-7

    Book  MATH  Google Scholar 

  37. Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: EON: a component-based approach to automation of protocol-directed therapy. J. Am. Med. Inform. Assoc. 3(6), 367–388 (1996)

    Article  Google Scholar 

  38. Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inform. 46, 744–763 (2013)

    Article  Google Scholar 

  39. Peleg, M., González-Ferrer, A.: Guidelines and Workflow Models, chap. 16, 2nd edn, pp. 435–464. Academic Press, Oxford (2014)

    Google Scholar 

  40. Peleg, M., et al.: Comparing computer-interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assoc. 10, 52–68 (2003)

    Article  Google Scholar 

  41. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_18

    Chapter  Google Scholar 

  42. Qu, G., Liu, Z., Cui, S., Tang, J.: Study on self-adaptive clinical pathway decision support system based on case-based reasoning. In: Li, S., Jin, Q., Jiang, X., Park, J.J.J.H. (eds.) Frontier and Future Development of Information Technology in Medicine and Education. LNEE, vol. 269, pp. 969–978. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7618-0_95

    Chapter  Google Scholar 

  43. Quaglini, S., Stefanelli, M., Cavallini, A., Micieli, G., Fassino, C., Mossa, C.: Guideline-based careflow systems. Artif. Intell. Med. 20(1), 5–22 (2000)

    Article  Google Scholar 

  44. Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37, 99–116 (2012)

    Article  Google Scholar 

  45. Riaño, D., Collado, A.: Model-based combination of treatments for the management of chronic comorbid patients. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS (LNAI), vol. 7885, pp. 11–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38326-7_2

    Chapter  Google Scholar 

  46. Rojas, E., Munoz-Gama, J., Sepulveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)

    Article  Google Scholar 

  47. Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.: Declarative process mining in healthcare. Expert Syst. Appl. 42(23), 9236–9251 (2015)

    Article  Google Scholar 

  48. dos Santos Garcia, C., et al.: Process mining techniques and applications - a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)

    Article  Google Scholar 

  49. Schadow, G., Russler, D.C., McDonald, C.J.: Conceptual alignment of electronic health record data with guideline and workflow knowledge. Int. J. Med. Inform. 64(2–3), 259–274 (2001)

    Article  Google Scholar 

  50. Shabo, A., Peleg, M., Parimbelli, E., Quaglini, S., Napolitano, C.: Interplay between clinical guidelines and organizational workflow systems. Experience from the MobiGuide project. Methods Inf. Med. 55(6), 488–494 (2016)

    Article  Google Scholar 

  51. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif. Intell. Med. 14(1–2), 29–51 (1998)

    Article  Google Scholar 

  52. Sordo, M., Ogunyemi, O., Boxwala, A.A., Greenes, R.A.: GELLO: an object-oriented query and expression language for clinical decision support. In: AMIA Annual Symposium Proceedings, p. 1012 (2003)

    Google Scholar 

  53. Sox, H.C.: Conflict of interest in practice guidelines panels. JAMA 317(17), 1739–1740 (2017)

    Article  Google Scholar 

  54. Sutton, D.R., Fox, J.: The syntax and semantics of the PROforma guideline modeling language. J. Am. Med. Inform. Assoc. 10(5), 433–443 (2003)

    Article  Google Scholar 

  55. Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and executing clinical guidelines. Artif. Intell. Med. 23(3), 249–276 (2001)

    Article  Google Scholar 

  56. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_25

    Chapter  Google Scholar 

  57. Van de Velde, S., et al.: A systematic review of trials evaluating success factors of interventions with computerised clinical decision support. Implement. Sci. 13(1), 114 (2018)

    Article  Google Scholar 

  58. Wall, E.: Clinical practice guidelines–is “regulation” the answer? J. Am. Board Family Med. 29(6), 642–643 (2016)

    Article  Google Scholar 

  59. Wang, Z., Norris, S.L., Bero, L.: The advantages and limitations of guideline adaptation frameworks. Implement. Sci. 13(1), 72 (2018)

    Article  Google Scholar 

  60. Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M.M., Mohapatra, S.: Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint logic programming. J. Biomed. Inform. 46(2), 341–353 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gatta, R. et al. (2019). Clinical Guidelines: A Crossroad of Many Research Areas. Challenges and Opportunities in Process Mining for Healthcare. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds) Business Process Management Workshops. BPM 2019. Lecture Notes in Business Information Processing, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-37453-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37453-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37452-5

  • Online ISBN: 978-3-030-37453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics