Skip to main content

A Genetic Algorithm Approach to Multi-Agent Mission Planning Problems

  • Conference paper
  • First Online:
Operations Research and Enterprise Systems (ICORES 2019)

Abstract

Multi-Agent Systems (MASs) have received great attention from scholars and engineers in different domains, including computer science and robotics. MASs try to solve complex and challenging problems (e.g., a mission) by dividing them into smaller problem instances (e.g., tasks) that are allocated to the individual autonomous entities (e.g., agents). By fulfilling their individual goals, they lead to the solution to the overall mission. A mission typically involves a large number of agents and tasks, as well as additional constraints, e.g., coming from the required equipment for completing a given task. Addressing such problem can be extremely complicated for the human operator, and several automated approaches fall short of scalability. This paper proposes a genetic algorithm for the automation of multi-agent mission planning. In particular, the contributions of this paper are threefold. First, the mission planning problem is cast into an Extended Colored Traveling Salesperson Problem (ECTSP), formulated as a mixed integer linear programming problem. Second, a precedence constraint reparation algorithm to allow the usage of common variation operators for ECTSP is developed. Finally, a new objective function minimizing the mission makespan for multi-agent mission planning problems is proposed.

This work was supported by the project Aggregate Farming in the Cloud (AFarCloud) European project, by the Swedish Foundation for Strategic Research under the project “Future factories in the cloud (FiC)” with grant number GMT14-0032, with project number 783221 (Call: H2020-ECSEL-2017-2), and by the Knowledge Foundation with the FIESTA project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CTSP is an abbreviation used in the literature for a Clustered TSP as well.

  2. 2.

    The link to benchmark scenarios: https://github.com/mdh-planner/ECTSP.

References

  1. Alighanbari, M., Kuwata, Y., How, J.P.: Coordination and control of multiple UAVs with timing constraints and loitering. In: Proceedings of the 2003 American Control Conference, vol. 6, pp. 5311–5316, June 2003

    Google Scholar 

  2. Baker, B.M., Ayechew, M.: A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 30(5), 787–800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bello-Orgaz, G., Ramirez-Atencia, C., Fradera-Gil, J., Camacho, D.: GAMPP: genetic algorithm for UAV mission planning problems. In: Novais, P., Camacho, D., Analide, C., El Fallah Seghrouchni, A., Badica, C. (eds.) Intelligent Distributed Computing IX. SCI, vol. 616, pp. 167–176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25017-5_16

    Chapter  Google Scholar 

  5. Bhatt, N., Chauhan, N.R.: Genetic algorithm applications on job shop scheduling problem: a review. In: International Conference on Soft Computing Techniques and Implementations (ICSCTI), pp. 7–14 (2015)

    Google Scholar 

  6. Brie, A.H., Morignot, P.: Genetic planning using variable length chromosomes. In: International Conference on Automated Planning and Scheduling, pp. 320–329. ICAPS (2005)

    Google Scholar 

  7. Contreras-Bolton, C., Parada, V.: Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PLoS One 10(9), e0137724 (2015)

    Article  Google Scholar 

  8. Cushing, W., Kambhampati, S., Mausam, Weld, D.S.: When is temporal planning really temporal? In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 1852–1859 (2007)

    Google Scholar 

  9. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

    MathSciNet  MATH  Google Scholar 

  10. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  11. Finke, G., Claus, A., Gunn, E.: A two-commodity network flow approach to the traveling salesman problem. Congressus Numerantium 41(1), 167–178 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Frasheri, M., Cürüklü, B., Ekström, M., Papadopoulos, A.V.: Adaptive autonomy in a search and rescue scenario. In: Proceedings of the 12th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 150–155, September 2018

    Google Scholar 

  13. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  14. Giardini, G., Kalmár-Nagy, T.: Genetic algorithm for combinatorial path planning: the subtour problem. Math. Probl. Eng. 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gouveia, L., Pesneau, P., Ruthmair, M., Santos, D.: Combining and projecting flow models for the (precedence constrained) asymmetric traveling salesman problem. Networks 71(4), 451–465 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  17. Qing-dao-er ji, R., Wang, Y.: A new hybrid genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 39(10), 2291–2299 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadri, R.L., Boctor, F.F.: An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode case. Eur. J. Oper. Res. 265(2), 454–462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helsgaun, K.: An effective implementation of K-opt moves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1, 119–163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: a review of the state-of-the-art. In: Koubâa, A., Martínez-de Dios, J.R. (eds.) Cooperative Robots and Sensor Networks 2015. SCI, vol. 604, pp. 31–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18299-5_2

    Chapter  Google Scholar 

  21. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32(12), 1495–1512 (2013)

    Article  Google Scholar 

  22. Kubo, M., Kasugai, H.: The precedence constrained traveling salesman problem. J. Oper. Res. Soc. Jpn. 34(2), 152–172 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuschel, T.: Two-commodity network flow formulations for vehicle routing problems with simultaneous pickup & delivery and a many-to-many structure. Inform. Kommunikationssysteme Supply Chain Manag. Logist. Transp. 5, 153–169 (2008)

    Google Scholar 

  24. Landa-Torres, I., Manjarres, D., Bilbao, S., Del Ser, J.: Underwater robot task planning using multi-objective meta-heuristics. Sensors 17(4:762), 1–15 (2017)

    Google Scholar 

  25. Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., Soumis, F.: A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows. Networks 23(7), 631–640 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J., Zhou, M., Sun, Q., Dai, X., Yu, X.: Colored traveling salesman problem. IEEE Trans. Cybern. 45(11), 2390–2401 (2015)

    Article  Google Scholar 

  27. Ma, F., Li, H.: An algorithm in solving the TSP based on the improved genetic algorithm. In: 2009 First International Conference on Information Science and Engineering (ICISE 2009), pp. 106–108, December 2009

    Google Scholar 

  28. Maoudj, A., Bouzouia, B., Hentout, A., Toumi, R.: Multi-agent approach for task allocation and scheduling in cooperative heterogeneous multi-robot team: Simulation results. In: 13th International Conference on Industrial Informatics (INDIN), pp. 179–184, July 2015

    Google Scholar 

  29. Masum, A.K.M., Shahjalal, M., Faruque, F., Sarker, I.H.: Solving the vehicle routing problem using genetic algorithm. Int. J. Adv. Comput. Sci. Appl. 2(7), 126–131 (2011)

    Google Scholar 

  30. Meng, X., Li, J., Dai, X., Dou, J.: Variable neighborhood search for a colored traveling salesman problem. IEEE Trans. Intell. Transp. Syst. 19(4), 1018–1026 (2018)

    Article  Google Scholar 

  31. Meng, X., Li, J., Zhou, M., Dai, X., Dou, J.: Population-based incremental learning algorithm for a serial colored traveling salesman problem. IEEE Trans. Syst. Man Cybern.: Syst. 48(2), 277–288 (2018)

    Article  Google Scholar 

  32. Miloradović., B., Çürüklü., B., Ekström., M., Papadopoulos., A.V.: Extended colored traveling salesperson for modeling multi-agent mission planning problems. In: Proceedings of the 8th International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, INSTICC, pp. 237–244. SciTePress (2019)

    Google Scholar 

  33. Miloradović, B., Çürüklü, B., Ekström, M.: A genetic planner for mission planning of cooperative agents in an underwater environment. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, December 2016

    Google Scholar 

  34. Miloradović, B., Çürüklü, B., Ekström, M.: A genetic mission planner for solving temporal multi-agent problems with concurrent tasks. In: Tan, Y., Takagi, H., Shi, Y., Niu, B. (eds.) ICSI 2017. LNCS, vol. 10386, pp. 481–493. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61833-3_51

    Chapter  Google Scholar 

  35. Monma, C.: Sequencing with general precedence constraints. Discrete Appl. Math. 3(2), 137–150 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moon, C., Kim, J., Choi, G., Seo, Y.: An efficient genetic algorithm for the traveling salesman problem with precedence constraints. Eur. J. Oper. Res. 140(3), 606–617 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nian, L., Jinhua, Z.: Hybrid genetic algorithm for TSP. In: Seventh International Conference on Computational Intelligence and Security, pp. 71–75, December 2011

    Google Scholar 

  38. Nunes, E., Manner, M., Mitiche, H., Gini, M.: A taxonomy for task allocation problems with temporal and ordering constraints. Robot. Autonom. Syst. 90, 55–70 (2017)

    Article  Google Scholar 

  39. Puljić, K., Manger, R.: Comparison of eight evolutionary crossover operators for the vehicle routing problem. Math. Commun. 18(2), 359–375 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms. Soft Comput. 21(17), 4883–4900 (2017)

    Article  Google Scholar 

  41. Ramirez-Atencia, C., Del Ser, J., Camacho, D.: Weighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planning. Swarm Evol. Comput. 44, 480–495 (2019)

    Article  Google Scholar 

  42. Ramirez-Atencia, C., R-Moreno, M.D., Camacho, D.: Handling swarm of UAVs based on evolutionary multi-objective optimization. Prog. Artif. Intell. 6(3), 263–274 (2017)

    Article  Google Scholar 

  43. Ramirez-Atencia, C., Rodríguez-Fernández, V., Gonzalez-Pardo, A., Camacho, D.: New artificial intelligence approaches for future UAV ground control stations. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2775–2782 (2017)

    Google Scholar 

  44. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  45. Yu, Y., Chen, Y., Li, T.: A new design of genetic algorithm for solving TSP. In: Fourth International Joint Conference on Computational Sciences and Optimization, pp. 309–313, April 2011

    Google Scholar 

  46. Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. Inform. J. Comput. 25, 346–363 (2013)

    Article  MathSciNet  Google Scholar 

  47. Zhong, W.: Multiple traveling salesman problem with precedence constraints based on modified dynamic tabu artificial bee colony algorithm. J. Inform. Comput. Sci. 11(4), 1225–1232 (2014)

    Article  Google Scholar 

  48. Zhou, X., Wang, W., Wang, T., Li, X., Li, Z.: A research framework on mission planning of the UAV swarm. In: 12th System of Systems Engineering Conference, pp. 1–6, June 2017

    Google Scholar 

Download references

Acknowledgements

Special thanks to Afshin E. Ameri for developing GUI for the MMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Miloradović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miloradović, B., Çürüklü, B., Ekström, M., Papadopoulos, A.V. (2020). A Genetic Algorithm Approach to Multi-Agent Mission Planning Problems. In: Parlier, G., Liberatore, F., Demange, M. (eds) Operations Research and Enterprise Systems. ICORES 2019. Communications in Computer and Information Science, vol 1162. Springer, Cham. https://doi.org/10.1007/978-3-030-37584-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37584-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37583-6

  • Online ISBN: 978-3-030-37584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics