Skip to main content

Combining Machine Learning and Operations Research Methods to Advance the Project Management Practice

  • Conference paper
  • First Online:
Operations Research and Enterprise Systems (ICORES 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1162))

Included in the following conference series:

Abstract

Project Management is a complex practice that is associated with a series of challenges such as handling of conflicts and dependencies in resource allocation, fine tuning of projects to avoid fragmented planning, handling of potential opportunities or threats during the execution of a project, and alignment between projects and business objectives. Traditionally, methods and tools to address these issues are based on analytical approaches developed in the realm of the Operations Research discipline. Aiming to facilitate and augment the quality of the Project Management practice, this paper proposes a hybrid approach that builds on the synergy between contemporary Machine Learning and Operations Research techniques. Based on past data, Machine Learning techniques can predict undesired situations, provide timely warnings and recommend preventive actions regarding problematic resource loads or deviations from business priority lists. The applicability of our approach is demonstrated through two real examples elaborating two different datasets. In these examples, we comment on the proper orchestration of the associated Operations Research and Machine Learning algorithms, paying equal attention to both optimization and big data manipulation issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Data available in: https://drive.google.com/file/d/13oixL7QuKtE2NidtBJEEHaoFpvylRXlH/view?usp=sharing.

  2. 2.

    We selected Kruskal-Wallis test due to the fact that our data are not normally distributed.

  3. 3.

    Code available at: https://github.com/nkanak/advance-project-management-practice.

  4. 4.

    Data available at: https://github.com/nkanak/advance-project-management-practice/blob/master/data/hadoop_issues.json, retrieved at: 10 Dec 2018.

  5. 5.

    Python class used: sklearn.naive_bayes.MultinomialNB.

  6. 6.

    https://developers.google.com/optimization/assignment/simple_assignment.

  7. 7.

    Python method used: sklearn.naive_bayes.MultinomailNB.score.

  8. 8.

    Python class used: lime.lime_text.LimeTextExplainer.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, pp. 265–283 (2016)

    Google Scholar 

  2. Aggarwal, C.C., Zhai, C.: Mining Text Data. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-3223-4

    Book  Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases (VLDB 1215), San Francisco, pp. 487–499 (1994)

    Google Scholar 

  4. Alkhraisat, H.: Issue tracking system based on ontology and semantic similarity computation. Int. J. Adv. Comput. Sci. Appl. 7(11), 248–251 (2016)

    Google Scholar 

  5. Betts, C., Power, J., Ammar, W.: GrapAL: Querying Semantic Scholar’s Literature Graph. arXiv preprint arXiv:1902.05170 (2019, to appear)

  6. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems, Philadelphia (2009)

    Google Scholar 

  7. Burke, L.I., Ignizio, J.P.: Neural networks and operations research: an overview. Comput. Oper. Res. 19(3), 179–189 (1992)

    Article  MATH  Google Scholar 

  8. Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep Learning with H2O, 6th edn. H2O.ai Inc. http://h2o.ai/resources/. Accessed 19 Oct 2018

  9. Cheung, S.O., Wong, P.S.P., Fung, A.S., Coffey, W.: Predicting project performance through neural networks. Int. J. Project Manag. 24(3), 207–215 (2006)

    Article  Google Scholar 

  10. Costantino, F., Gravio, G.D., Nonino, F.: Project selection in project portfolio management: an artificial neural network model based on critical success factors. Int. J. Proj. Manag. 33(8), 1744–1754 (2015)

    Article  Google Scholar 

  11. Dolan, E., More, J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, J.R., Lindner, C.H.: Business analytics: the next frontier for decision sciences. Decis. Line 43(2), 4–6 (2012)

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  15. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 93 (2018)

    Article  Google Scholar 

  16. Hill, J., Thomas, L.C., Allen, D.B.: Experts’ estimates of task durations in software development projects. Int. J. Proj. Manag. 18(1), 13–21 (2000)

    Article  Google Scholar 

  17. Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. In: Proceedings of the 1994 Second Australian and New Zealand Conference, Adelaide, pp. 357–361 (1994)

    Google Scholar 

  18. Hooker, J.N., Van Hoeve, W.J.: Constraint programming and operations research. Constraints 23(2), 172–195 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaccard, P.: Étude comparative de la distribuition florale dans une portion des Alpes et des Jura. Bull. Soc. Vandoise Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  20. Kanakaris, N., Karacapilidis, N., Lazanas, A.: On the advancement of project management through a flexible integration of machine learning and operations research tools. In: 8th International Conference on Operations Research and Enterprise Systems (ICORES), Prague, pp. 362–369 (2019)

    Google Scholar 

  21. Karacapilidis, N., Malefaki, S., Charissiadis, A.: A novel framework for augmenting the quality of explanations in recommender systems. Intell. Decis. Technol. J. 11(2), 187–197 (2017)

    Article  Google Scholar 

  22. Karacapilidis, N.: Mastering Data-Intensive Collaboration and Decision Making: Cutting-Edge Research and Practical Applications in the Dicode Project. Studies in Big Data Series, vol. 5. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02612-1

    Google Scholar 

  23. Levitt, R.E., Kunz, J.C.: Using artificial intelligence techniques to support project management. Artif. Intell. Eng. Des. Anal. Manuf. 1(1), 3–24 (1987)

    Article  Google Scholar 

  24. Maurya, A., Telang, R.: Bayesian multi-view models for member-job matching and personalized skill recommendations. In: 2017 IEEE International Conference on Big Data, pp. 1193–1202. IEEE (2017)

    Google Scholar 

  25. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the fifth ACM conference on Digital libraries, pp. 195–204. ACM (2000)

    Google Scholar 

  26. O’Malley, O.: Terabyte sort on apache hadoop. Yahoo, pp. 1–3 (2008). http://sortbenchmark.org/Yahoo-Hadoop.pdf

  27. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lerer, A.: Automatic differentiation in pytorch. In: 31st Conference on Neural Information Processing Systems, Long Beach, pp. 1–4 (2017)

    Google Scholar 

  28. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(1), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Pittaras, N., Giannakopoulos, G., Tsekouras, L., Varlamis, I.: Document clustering as a record linkage problem. In: Proceedings of the ACM Symposium on Document Engineering, p. 39. ACM (2018)

    Google Scholar 

  30. Radin, R.L.: Optimization in Operations Research. Prentice-Hall, New Jersey (1998)

    Google Scholar 

  31. Raschka, S.: Python Machine Learning. Packt Publishing Ltd., Birmingham (2015)

    Google Scholar 

  32. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  33. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5(1), 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical multilabel classification models. J. Mach. Learn. Res. 7(1), 1601–1626 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Rummelhart, D., Hinton, G., Williams, R.: Learning Internal Representations by Error Propagation. Parallel Distributed Processing. MIT Press, Cambridge (1986)

    Google Scholar 

  36. Shivaswamy, P.K., Bhattacharyya, C., Smola, A.J.: Second order cone programming approaches for handling missing and uncertain data. J. Mach. Learn. Res. 7(1), 1283–1314 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Smith, K.A., Gupta, J.N.: Neural networks in business: techniques and applications for the operations researcher. Comput. Oper. Res. 27(11), 1023–1044 (2000)

    Article  MATH  Google Scholar 

  38. Spanakis, G., Siolas, G., Stafylopatis, A.: Exploiting Wikipedia knowledge for conceptual hierarchical clustering of documents. Comput. J. 55(3), 299–312 (2012)

    Article  MATH  Google Scholar 

  39. Svejvig, P., Andersen, P.: Rethinking project management: a structured literature review with a critical look at the brave new world. Int. J. Proj. Manag. 33(2), 278–290 (2015)

    Article  Google Scholar 

  40. Trupti, M.K., Prashant, R.M.: Review on determining number of cluster in K-means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1(6), 90–95 (2013)

    Google Scholar 

  41. Tsekouras, L., Varlamis, I., Giannakopoulos, G.: Graph-based text similarity measure that employs named entity information. In: RANLP, pp. 765–771 (2017)

    Google Scholar 

  42. Vazirgiannis, M., Malliaros, F.D., Nikolentzos, G.: GraphRep: boosting text mining, NLP and information retrieval with graphs. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2295–2296. ACM (2018)

    Google Scholar 

  43. Wang, Y.R., Yu, C.Y., Chan, H.H.: Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. Int. J. Proj. Manag. 30(4), 470–478 (2012)

    Article  Google Scholar 

  44. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Lazanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanakaris, N., Karacapilidis, N., Kournetas, G., Lazanas, A. (2020). Combining Machine Learning and Operations Research Methods to Advance the Project Management Practice. In: Parlier, G., Liberatore, F., Demange, M. (eds) Operations Research and Enterprise Systems. ICORES 2019. Communications in Computer and Information Science, vol 1162. Springer, Cham. https://doi.org/10.1007/978-3-030-37584-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37584-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37583-6

  • Online ISBN: 978-3-030-37584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics