Skip to main content

Directed Acyclic Graph Reconstruction Leveraging Prior Partial Ordering Information

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2019)

Abstract

Reconstructing directed acyclic graphs (DAGs) from observed data constitutes an important machine learning task. It has important applications in systems biology and functional genomics. However, it is a challenging learning problem, due to the need to consider all possible orderings of the network nodes and score the resulting network structures based on the available data. The resulting computational complexity for enumerating all possible orderings is exponential in the size of the network. A large number of methods based on various modeling formalisms have been developed to address this problem, primarily focusing on developing fast algorithms to reduce computational time. On many instances, partial topological information may be available for subsets of the nodes; for example, in biology one has information about transcription factors that regulate (precede) other genes, or such information can be obtained from perturbation/silencing experiments for subsets of DAG nodes (genes).

We develop a framework for estimating DAGs from observational data under the assumption that the nodes are partitioned into sets and a complete topological ordering exists amongst them. The proposed approach combines (i) (penalized) regression to estimate edges between nodes across different sets, with (ii) the popular PC-algorithm that identifies the skeleton of the graph within each set. In the final step, we combine the results from the previous two steps to screen out redundant edges. We illustrate the performance of the proposed approach on topologies extracted from the DREAM3 competition. The numerical results showcase the usefulness of the additional partial topological ordering information for this challenging learning problem.

Supported by grants NIH 1U01CA23548701 and 5R01GM11402904 to G. Michailidis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anchang, B., et al.: Modeling the temporal interplay of molecular signaling and gene expression by using dynamic nested effects models. Proc. Nat. Acad. Sci. 106(16), 6447–6452 (2009)

    Article  Google Scholar 

  2. Andersson, S.A., Madigan, D., Perlman, M.D.: Alternative markov properties for chain graphs. Scand. J. Stat. 28(1), 33–85 (2001)

    Article  MathSciNet  Google Scholar 

  3. Aragam, B., Zhou, Q.: Concave penalized estimation of sparse Gaussian Bayesian networks. J. Mach. Learn. Res. 16, 2273–2328 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bühlmann, P., Peters, J., Ernest, J., et al.: CAM: causal additive models, high-dimensional order search and penalized regression. Ann. Stat. 42(6), 2526–2556 (2014)

    Article  MathSciNet  Google Scholar 

  5. Champion, M., Picheny, V., Vignes, M.: Inferring large graphs using \(\ell \_1 \)-penalized likelihood. Stat. Comput. 28(4), 905–921 (2018)

    Article  MathSciNet  Google Scholar 

  6. Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15(1), 3741–3782 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Fu, F., Zhou, Q.: Learning sparse causal Gaussian networks with experimental intervention: regularization and coordinate descent. J. Am. Stat. Assoc. 108(501), 288–300 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gu, J., Fu, F., Zhou, Q.: Penalized estimation of directed acyclic graphs from discrete data, March 2014. https://arxiv.org/abs/1403.2310

  10. Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8(Mar), 613–636 (2007)

    MATH  Google Scholar 

  11. Kalisch, M., Mächler, M., Colombo, D., Maathuis, M.H., Bühlmann, P., et al.: Causal inference using graphical models with the R package pcalg. J. Stat. Softw. 47(11), 1–26 (2012)

    Article  Google Scholar 

  12. Lee, T.I., et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

    Article  Google Scholar 

  13. Liang, X., Young, W.C., Hung, L.H., Raftery, A.E., Yeung, K.Y.: Integration of multiple data sources for gene network inference using genetic perturbation data. J. Comput. Biol. 26, 1113–1129 (2019)

    Google Scholar 

  14. Lin, J., Basu, S., Banerjee, M., Michailidis, G.: Penalized maximum likelihood estimation of multi-layered Gaussian graphical models. J. Mach. Learn. Res. 17(146), 1–51 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Markowetz, F., Kostka, D., Troyanskaya, O.G., Spang, R.: Nested effects models for high-dimensional phenotyping screens. Bioinformatics 23(13), i305–i312 (2007)

    Article  Google Scholar 

  16. Ni, Y., Stingo, F.C., Baladandayuthapani, V.: Bayesian nonlinear model selection for gene regulatory networks. Biometrics 71(3), 585–595 (2015)

    Article  MathSciNet  Google Scholar 

  17. Peters, J.M.: Restricted structural equation models for causal inference. Ph.D. thesis, ETH Zurich (2012)

    Google Scholar 

  18. Pinna, A., Soranzo, N., De La Fuente, A.: From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PLoS ONE 5(10), e12912 (2010)

    Article  Google Scholar 

  19. Qin, S., Ma, F., Chen, L.: Gene regulatory networks by transcription factors and micrornas in breast cancer. Bioinformatics 31(1), 76–83 (2014)

    Article  Google Scholar 

  20. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(Oct), 2003–2030 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Shojaie, A., Jauhiainen, A., Kallitsis, M., Michailidis, G.: Inferring regulatory networks by combining perturbation screens and steady state gene expression profiles. PLoS ONE 9(2), e82393 (2014)

    Article  Google Scholar 

  22. Shojaie, A., Michailidis, G.: Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika 97(3), 519–538 (2010)

    Article  MathSciNet  Google Scholar 

  23. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Lecture Notes in Statistics. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-2748-9

    Book  MATH  Google Scholar 

  24. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Michailidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, PL., Michailidis, G. (2019). Directed Acyclic Graph Reconstruction Leveraging Prior Partial Ordering Information. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37599-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37598-0

  • Online ISBN: 978-3-030-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics