Abstract
While vast volumes of personal data are being gathered daily by individuals, the MMM community has not really been tackling the challenge of developing novel retrieval algorithms for this data, due to the challenges of getting access to the data in the first place. While initial efforts have taken place on a small scale, it is our conjecture that a new evaluation paradigm is required in order to make progress in analysing, modeling and retrieving from personal data archives. In this position paper, we propose a new model of Evaluation-as-a-Service that re-imagines the test collection methodology for personal multimedia data in order to address the many challenges of releasing test collections of personal multimedia data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghaei, M., Dimiccoli, M., Ferrer, C.C., Radeva, P.: Towards social pattern characterization in egocentric photo-streams. Comput. Vis. Image Underst. 171, 104–117 (2018)
Alsuhaibani, A., Cox, A., Hopfgartner, F.: Investigating the role of social media during the transition of international students to the UK. In: iConference 2019 Poster Proceedings, IDEALS (2019)
Awad, G., et al.: TRECVID 2018: benchmarking video activity detection, video captioning and matching, video storytelling linking and video search. In: TRECVid 2018: Proceedings of the TREC Video Retrieval Evaluation Conference. NIST, Gaithersburg (2018)
Bailer, W.: Face swapping for solving collateral privacy issues in multimedia analytics. In: MMM 2019, pp. 169–177 (2019)
Cavoukian, A.: Privacy by design: the 7 foundational principles. Implementation and mapping of fair information practices. Information and Privacy Commissioner of Ontario, Canada (2010)
Chang, R.M., Kauffman, R.J., Kwon, Y.: Understanding the paradigm shift to computational social science in the presence of big data. Decis. Support Syst. 63, 67–80 (2014)
Dang-Nguyen, D.T., Piras, L., Riegler, M., Zhou, L., Lux, M., Gurrin, C.: Overview of ImageCLEFlifelog 2018: daily living understanding and lifelog moment retrieval. In: CLEF2018 Working Notes, Avignon, France (2018)
Dix, A., Ellis, G.: The Alan Walks Wales Dataset: Quantified Self and Open Data, pp. 56–66. Open data as open educational resources: case studies of emerging practice, The Open University (2015)
Dodge, M., Kitchin, R.: ‘Outlines of a world coming into existence’: pervasive computing and the ethics of forgetting. Environ. Plann. B Plann. Design 34(3), 431–445 (2007). https://doi.org/10.1068/b32041t
Gemmell, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: Mylifebits: fulfilling the memex vision. In: Proceedings of the Tenth ACM International Conference on Multimedia, MULTIMEDIA 2002, pp. 235–238. ACM, New York (2002)
Gollub, T., Stein, B., Burrows, S.: Ousting ivory tower research: towards a web framework for providing experiments as a service. In: The 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, Portland, OR, USA, 12–16 August 2012, pp. 1125–1126 (2012)
Gupta, R., Gurrin, C.: Approaches for event segmentation of visual lifelog data. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10704, pp. 581–593. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73603-7_47
Gurrin, C., Albatal, R., Joho, H., Ishii, K.: A privacy by design approach to lifelogging. In: Digital Enlightenment Yearbook 2014, pp. 49–73. IOS Press (2014)
Gurrin, C., Joho, H., Hopfgartner, F., Zhou, L., Albatal, R.: Overview of NTCIR-12 lifelog task. In: Kando, N., Kishida, K., Kato, M.P., Yamamoto, S. (eds.) Proceedings of the 12th NTCIR Conference on Evaluation of Information Access Technologies, pp. 354–360 (2016)
Gurrin, C., et al.: Overview of NTCIR-13 lifelog-2 task. In: Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies (2017)
Gurrin, C., et al.: Overview of the NTCIR-14 lifelog-3 task. In: Online Proceedings of the Fourteenth NTCIR Conference (NTCIR-14), NII (2019)
Harman, D.: Information retrieval: the early years. Found. Trends Inf. Retrieval 13(5), 425–577 (2019)
Hayashi, T., Nishida, M., Kitaoka, N., Toda, T., Takeda, K.: Daily activity recognition with large-scaled real-life recording datasets based on deep neural network using multi-modal signals. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E101.A, 199–210 (2018)
Herruzo, P., Portell, L., Soto, A., Remeseiro, B.: Analyzing first-person stories based on socializing, eating and sedentary patterns. In: Battiato, S., Farinella, G.M., Leo, M., Gallo, G. (eds.) ICIAP 2017. LNCS, vol. 10590, pp. 109–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70742-6_10
Hodges, S., et al.: SenseCam: a retrospective memory aid. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 177–193. Springer, Heidelberg (2006). https://doi.org/10.1007/11853565_11
Hopfgartner, F., Davidson, J.: Digital preservation and curation of self-tracking data: a position paper. In: Proceedings of the 1st Workshop on Knowledge Discovery and User Modelling for Smart Cities Co-located with 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, UMCit at KDD 2018, London, United Kingdom, 20 August 2018, pp. 1–5 (2018)
Hopfgartner, F.: Evaluation-as-a-service for the computational sciences: overview and outlook. J. Data Inf. Quality 10(4), 15:1–15:32 (2018)
Ionescu, B., et al.: ImageCLEF 2019: multimedia retrieval in lifelogging, medical, nature, and security applications. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11438, pp. 301–308. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_40
Janin, A., et al.: The ICSI meeting corpus. In: ICASSP 2003, April 2003
Korotitisch, W.J., Nelson-Gray, R.O.: An overview of self-monitoring research in assessment and treatment. Psychol. Assess. 11, 415–425 (1999)
Larson, M. (eds.): Working Notes Proceedings of the MediaEval 2018 Workshop, Sophia Antipolis, France, 29–31 October 2018, CEUR Workshop Proceedings, vol. 2283 (2018). CEUR-WS.org
Li, I., Dey, A.K., Forlizzi, J.: A stage-based model of personal informatics systems. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA, 10–15 April 2010, pp. 557–566 (2010)
Lidon, A., Bolaños, M., Dimiccoli, M., Radeva, P., Garolera, M., Giró, X.: Semantic summarization of egocentric photo stream events. In: LTA@MM (2017)
Lorenz, F., et al.: Countering contextual bias in TV watching behavior: introducing social trend as external contextual factor in TV recommenders. In: Proceedings of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video, Hilversum, The Netherlands, 14–16 June 2017, pp. 21–30 (2017)
Miyanishi, T., Hirayama, J., Kanemura, A., Kawanabe, M.: Answering mixed type questions about daily living episodes. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 4265–4271 (2018)
Garcia del Molino, A., Lim, J.H., Tan, A.H.: Predicting visual context for unsupervised event segmentation in continuous photo-streams. In: ACM Multimedia Conference (ACMMM 2018), MM 2018, pp. 10–17. ACM, New York (2018)
Piasek, P.: Case Studies in Therapeutic SenseCam Use Aimed at Identity Maintenance in Early Stage Dementia. Ph.D. thesis, Dublin City University (2015)
Sellen, A.J., Whittaker, S.: Beyond total capture: a constructive critique of lifelogging. Commun. ACM 53(5), 70–77 (2010)
Servia-Rodriguez, S., Wang, L., Zhao, J., Mortier, R., Haddadi, H.: Privacy-preserving personal model training. In: ACM/IEEE International Conference on Internet of Things Design and Implementation, pp. 153–164 (2018)
Smeaton, A.F., et al.: Semantic indexing of wearable camera images: Kids’Cam concepts. In: Proceedings of the 2016 ACM Workshop on Vision and Language Integration Meets Multimedia Fusion (2016)
Stevinson, C., Wiltshire, G., Hickson, M.: Facilitating participation in health-enhancing physical activity: a qualitative study of parkrun. Int. J. Behav. Med. 22(2), 170–177 (2015)
Su, Y.C., Grauman, K.: Detecting engagement in egocentric video. In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)
Voorhees, E.M., Harman, D.K.: TREC: Experiment and Evaluation in Information Retrieval. The MIT Press, Cambridge (Digital Libraries and Electronic Publishing) (2005)
Walsh, D., Clough, P., Hall, M.M., Hopfgartner, F., Foster, J., Kontonatsios, G.: Analysis of transaction logs from National Museums Liverpool. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) TPDL 2019. LNCS, vol. 11799, pp. 84–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30760-8_7
Xu, J., Mukherjee, L., Li, Y., Warner, J., Rehg, J.M., Singh, V.: Gaze-enabled egocentric video summarization via constrained submodular maximization. In: Proceedings of CVPR (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hopfgartner, F., Gurrin, C., Joho, H. (2020). Rethinking the Test Collection Methodology for Personal Self-tracking Data. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11962. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-37734-2_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37733-5
Online ISBN: 978-3-030-37734-2
eBook Packages: Computer ScienceComputer Science (R0)