Skip to main content

A Framework for Multi-level Modeling of Analog/Mixed Signal Embedded Systems

  • Conference paper
  • First Online:
Model-Driven Engineering and Software Development (MODELSWARD 2019)

Abstract

Embedded systems are commonly built upon heterogeneous digital and analog integrated circuits, including sensors and actuators. Model-driven approaches for designing software and hardware are generally limited to the digital parts of systems. In the present paper, we adopt a global view on the extensions made to an integrated modeling and simulation tool, TTool. In this tool, the verification and virtual prototyping of embedded systems is described at different abstraction levels and extended in order to handle analog/mixed-signal systems. An extensive case study spans these levels and illustrates the usefulness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  3. Accellera Systems Initiative: SystemC AMS extensions Users Guide, Version 1.0. Accellera Systems Initiative, March 2010

    Google Scholar 

  4. Andrade, L., Maehne, T., Vachoux, A., Ben Aoun, C., Pêcheux, F., Louërat, M.M.: Pre-simulation formal analysis of synchronization issues between discrete event and timed data flow models of computation. In: Design, Automation and Test in Europe, DATE Conference, March 2015

    Google Scholar 

  5. Andrade Porras, L.: Principles and implementation of a generic synchronization interface between SystemC AMS models of computation for the virtual prototyping of multi-disciplinary systems. Ph.D. thesis, Université Pierre et Marie Curie (2016)

    Google Scholar 

  6. Apvrille, L.: Webpage of TTool (2011)

    Google Scholar 

  7. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A.L.: Metropolis: an integrated electronic system design environment. IEEE Comput. 36(4), 45–52 (2003)

    Article  Google Scholar 

  8. Becoulet, A.: Mutekh. http://www.mutekh.org

  9. Beyond Dreams Consortium: Beyond Dreams (Design Refinement of Embedded Analogue and Mixed-Signal Systems) (2008–2011). http://projects.eas.iis.fraunhofer.de/beyonddreams

  10. Bouquet, F., Gauthier, J.M., Hammad, A., Peureux, F.: Transformation of SysML structure diagrams to VHDL-AMS. In: 2012 Second Workshop on Design, Control and Software Implementation for Distributed MEMS, pp. 74–81. IEEE (2012)

    Google Scholar 

  11. Bybell, T.: GTKWave Viewer (2019). http://gtkwave.sourceforge.net

  12. Capocchi, L., Santucci, J.F., Poggi, B., Nicolai, C.: DEVSimPY: a collaborative python software for modeling and simulation of DEVS systems. In: 2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 170–175. IEEE (2011)

    Google Scholar 

  13. echOpen Community: Designing an open-source and low-cost echo-stethoscope (2017). http://www.echopen.org/

  14. Concepcion, A.I., Zeigler, B.P.: DEVS formalism: a framework for hierarchical model development. IEEE Trans. Softw. Eng. 14(2), 228–241 (1988)

    Article  Google Scholar 

  15. Porto, R.C.: Integration of SystemC-AMS simulation platforms into TTool. Master’s thesis, Technische Universität Kaiserslautern (2018)

    Google Scholar 

  16. Porto, R.C., Genius, D., Apvrille, L.: Modeling and virtual prototyping for embedded systems on mixed-signal multicores. In: RAPIDO (2019)

    Google Scholar 

  17. Damm, M., Grimm, C., Haas, J., Herrholz, A., Nebel, W.: Connecting SystemC-AMS models with OSCI TLM 2.0 models using temporal decoupling. In: FDL, pp. 25–30 (2008)

    Google Scholar 

  18. Davare, A.: A next-generation design framework for platform-based design. In: DVCon, vol. 152 (2007)

    Google Scholar 

  19. Einwich, K.: SystemC AMS PoC2.1 Library, COSEDA, Dresden (2016)

    Google Scholar 

  20. EVITA: E-safety vehicle intrusion protected applications. http://www.evita-project.org/

  21. Fong, C.: Discrete-time dataflow models for visual simulation in ptolemy II. Master’s report, Memorandum UCB/ERL M 1 (2001)

    Google Scholar 

  22. Fritzson, P., Engelson, V.: Modelica—a unified object-oriented language for system modeling and simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–90. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054087

    Chapter  Google Scholar 

  23. Gamatié, A., et al.: A model-driven design framework for massively parallel embedded systems. ACM Trans. Embed. Comput. Syst. 10(4), 39 (2011)

    Article  Google Scholar 

  24. Genius, D., Apvrille, L.: Virtual yet precise prototyping: an automotive case study. In: ERTSS 2016, Toulouse, January 2016

    Google Scholar 

  25. Genius, D., Li, L.W., Apvrille, L.: Model-driven performance evaluation and formal verification for multi-level embedded system design. In: 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), Porto, Portugal (2017)

    Google Scholar 

  26. Genius, D., Li, L.W., Apvrille, L.: Multi-level latency evaluation with an MDE approach. In: 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), Funchal, Portugal (2018)

    Google Scholar 

  27. Genius, D., Cortés Porto, R., Apvrille, L., Pêcheux, F.: A tool for high-level modeling of analog/mixed signal embedded systems. In: 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), Prague, Czech Republic (2019)

    Google Scholar 

  28. Greiner, A.: Writing efficient cycle-accurate, bit-accurate SystemC simulation models for SoCLib, September 2017. http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba. http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba. As of: 16 October 2018

  29. Guo, L., Zhu, Q., Nuzzo, P., Passerone, R., Sangiovanni-Vincentelli, A., Lee, E.A.: Metronomy: a function-architecture co-simulation framework for timing verification of cyber-physical systems. In: Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis, p. 24. ACM (2014)

    Google Scholar 

  30. H-Inception Consortium: Heterogeneous Inception Project (2012–2015). https://www-soc.lip6.fr/trac/hinception

  31. Herrera, F., Villar, E.: A framework for heterogeneous specification and design of electronic embedded systems in SystemC. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12(3), 22 (2007)

    Article  Google Scholar 

  32. IEEE: SystemC. IEEE Standard 1666-2011 (2011)

    Google Scholar 

  33. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Modelling and Validation of Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

    Book  MATH  Google Scholar 

  34. Kelling, E., et al.: Specification and evaluation of e-security relevant use cases. Technical report, Deliverable D2.1, EVITA Project (2009)

    Google Scholar 

  35. Lee, E.A.: Disciplined heterogeneous modeling. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 273–287. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16129-2_20

    Chapter  Google Scholar 

  36. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)

    Article  Google Scholar 

  37. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow programs for digital signal processing. IEEE Trans. Comput. C–36(1), 24–35 (1987). https://doi.org/10.1109/TC.1987.5009446

    Article  Google Scholar 

  38. Li, L., Apvrille, L., Genius, D.: Virtual prototyping of automotive systems: towards multi-level design space exploration. In: DASIP (2016)

    Google Scholar 

  39. Li, L.W., Genius, D., Apvrille, L.: Formal and virtual multi-level design space exploration. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MODELSWARD 2017. CCIS, vol. 880, pp. 47–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94764-8_3

    Chapter  Google Scholar 

  40. Niaki, S.H.A., Jakobsen, M.K., Sulonen, T., Sander, I.: Formal heterogeneous system modeling with SystemC. In: 2012 Forum on Specification and Design Languages (FDL), pp. 160–167. IEEE (2012)

    Google Scholar 

  41. Ninios, P., Vlahos, K., Bunn, D.W.: OO/DEVS: a platform for industry simulation and strategic modelling. Decis. Support Syst. 15(3), 229–245 (1995)

    Article  Google Scholar 

  42. Ptolemy.org (ed.): System Design, Modeling, and Simulation using Ptolemy II (2014)

    Google Scholar 

  43. Quillevere, H.: Gtk Analog Wave Viewer (2019). http://www.rvq.fr/linux/gaw.php

  44. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE: Developing Cyber-Physical Systems. Elsevier, Amsterdam (2013)

    Google Scholar 

  45. SocLib Consortium: The SoCLib project: an integrated system-on-chip modelling and simulation platform. Technical report, CNRS (2003). www.soclib.fr

  46. Taha, S., Radermacher, A., Gérard, S.: An entirely model-based framework for hardware design and simulation. In: Hinchey, M., et al. (eds.) BICC/DIPES -2010. IAICT, vol. 329, pp. 31–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15234-4_5

    Chapter  Google Scholar 

  47. Vachoux, A., Grimm, C., Einwich, K.: Analog and mixed signal modelling with SystemC-AMS. In: ISCAS (3), pp. 914–917. IEEE (2003). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8570

  48. Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J.P.: A co-design approach for embedded system modeling and code generation with UML and MARTE. In: DATE, pp. 226–231. IEEE (2009)

    Google Scholar 

  49. VSI Alliance: Virtual Component Interface Standard (OCB 2 2.0), August 2000

    Google Scholar 

  50. Zeigler, B.P., Kim, D.: Distributed supply chain simulation in a DEVS/CORBA execution environment. In: WSC 1999, 1999 Winter Simulation Conference Proceedings. Simulation-A Bridge to the Future (Cat. No. 99CH37038), vol. 2, pp. 1333–1340. IEEE (1999)

    Google Scholar 

  51. Zhu, J., Sander, I., Jantsch, A.: HetMoC: heterogeneous modelling in SystemC. In: 2010 Forum on Specification & Design Languages (FDL 2010), pp. 1–6. IET (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Genius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Genius, D., Cortés Porto, R., Apvrille, L., Pêcheux, F. (2020). A Framework for Multi-level Modeling of Analog/Mixed Signal Embedded Systems. In: Hammoudi, S., Pires, L., Selić, B. (eds) Model-Driven Engineering and Software Development. MODELSWARD 2019. Communications in Computer and Information Science, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-37873-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37873-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37872-1

  • Online ISBN: 978-3-030-37873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics