Skip to main content

SiO2 Electronic Structure in Gas Giants’ Planetary Cores: A Density Functional Theory Approach

  • Conference paper
  • First Online:
Supercomputing (ISUM 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1151))

Included in the following conference series:

Abstract

Modern physical models and computational tools allow us to probe into the deepest and extremest conditions of high-pressure and high-temperature systems such as planetary cores. Gas giants planets, despite of being mainly composed of light elements as Hydrogen, Helium and Ammonia ices, inside the thick gas layers under their atmospheres all of them they should be composed of heavy elements laying in the center of the planet. Those heavy elements, by the suggestion of the density calculations based on the observed volume and measured mass by gravitational effects, must be mainly metallic oxides, iron compounds, silicate allotropes, and other similar heavy elements forming a rocky core, with an structure resembling the mantles of the rocky planets in our System. With the aid of the Quinde I Supercomputer, a Density Functional Theory simulation is performed under SiO2 quartz structures found on Earth to approach the Seifertite crystal phase of the same composition, by applying extreme pressure conditions. The obtained electronic configuration of the obtained structure lies inside the range of expected values for the band gap energies at different pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ault, A.: Ask smithsonian: whats the deepest hole ever dug (2015)

    Google Scholar 

  2. Bartolotti, L.J.: Time-dependent Kohn-Sham density-functional theory. Phys. Rev. A 26(4), 2243 (1982)

    Article  MathSciNet  Google Scholar 

  3. Bloch, F.: Z. Phys. 52, 555 (1928). https://link.springer.com/article/10.1007/BF01339455

  4. Bouvier, A., Blichert-Toft, J., Albarede, F.: Martian meteorite chronology and the evolution of the interior of Mars. Earth Planet. Sci. Lett. 280(1–4), 285–295 (2009)

    Article  Google Scholar 

  5. Bryden, G., Lin, D., Ida, S.: Protoplanetary formation. I. neptune. Astrophys. J. 544(1), 481 (2000)

    Article  Google Scholar 

  6. El Goresy, A., et al.: Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur. J. Mineral. 20(4), 523–528 (2008)

    Article  Google Scholar 

  7. Griffiths, D., Schroeter, D.: Introduction to Quantum Mechanics. (2018). ISBN 9781107189638

    Google Scholar 

  8. Hafner, J., Wolverton, C., Ceder, G.: Toward computational materials design: the impact of density functional theory on materials research. MRS Bull. 31(9), 659–668 (2006)

    Article  Google Scholar 

  9. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  MathSciNet  Google Scholar 

  10. Hubbard, W.B., MacFarlane, J.J.: Structure and evolution of Uranus and Neptune. J. Geophys. Res. Solid Earth 85(B1), 225–234 (1980)

    Article  Google Scholar 

  11. Jayaraman, A.: Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55(1), 65 (1983)

    Article  MathSciNet  Google Scholar 

  12. Kittel, C., McEuen, P.: Introduction to Solid State Physics (2018). ISBN 9781119454168

    Google Scholar 

  13. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  MathSciNet  Google Scholar 

  14. Levy, M., Nagy, Á.: Variational density-functional theory for an individual excited state. Phys. Rev. Lett. 83(21), 4361 (1999)

    Article  Google Scholar 

  15. Mattuck, R.: A Guide to Feynman Diagrams in the Many-Body Problem, 2nd edn (2012). ISBN 9780486131641

    Google Scholar 

  16. Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  MathSciNet  Google Scholar 

  17. Oganov, A.R., Lyakhov, A.O.: Towards the theory of hardness of materials. J. Superhard Mater. 32(3), 147 (2010)

    Article  Google Scholar 

  18. Podolak, M., Weizman, A., Marley, M.: Planet. Space Sci. 43, 1517 (1995)

    Google Scholar 

  19. Ross, M.: The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292(5822), 435 (1981)

    Article  Google Scholar 

  20. Sholl, D., Steckel, J.: Density Functional Theory: A Practical Introduction (2011). ISBN 9781118211045

    Google Scholar 

  21. Tyler, G., et al.: Voyager radio science observations of Neptune and Triton. Science 246(4936), 1466–1473 (1989)

    Article  Google Scholar 

  22. Umemoto, K., Wentzcovitch, R.M., Allen, P.B.: Dissociation of MgSio3 in the cores of gas giants and terrestrial exoplanets. Science 311(5763), 983–986 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

Special thanks to the National Institute of Supercomputing of Ecuador for allow us to perform the simulations in the Quinde I supercomputer, located at Innópolis, Urcuquí, Ecuador. We would like to thank Professor H. Pinto for his valuable review and commentaries over the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Ramírez-Velásquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramírez-Velásquez, J.M., Salazar, J.M. (2019). SiO2 Electronic Structure in Gas Giants’ Planetary Cores: A Density Functional Theory Approach. In: Torres, M., Klapp, J. (eds) Supercomputing. ISUM 2019. Communications in Computer and Information Science, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-38043-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38043-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38042-7

  • Online ISBN: 978-3-030-38043-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics