Abstract
Manufacturing industries generate a large amount of data from various devices, systems and applications. Challenges, including both data management and data analysis exist in Industry 4.0 with few solutions to handle processing large amounts of data. The data needs to be processed, analyzed and secured to help improve the systems efficiency, safety and scalability. Hence, a new approach is needed to support industrial big data analytics. Industry 4.0 is a new advanced manufacturing vision originated by the German government. Since it is a new concept, there are only several existing surveys that discuss the connection between cyber physical systems and industrial big data analytics. Therefore, this survey will present new concepts, methodologies and application scenarios to reach full industrial autonomy and bring more attention to existing challenges between big data analytics and cyber physical systems. Current solutions, implemented through cyber physical systems, are discussed to highlight desired future research directions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Brettel, N. Friederchsen, M. Keller, M. Rosenberg, How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. World Acad. Sci. Eng. Technol. 8(1), 37–44 (2014)
L. Bassi, in Industry 4.0: Hope, Hype or Revolution? IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), (2017), pp. 1–6
L.D. Xu, L. Duan, Big data for cyber physical systems in industry 4.0: A survey. Enterp. Inf. Syst. 13(2), 148–169 (2019)
S. Yin, O. Kaynak, Big data for modern industry: Challenges and trends [point of view]. Proc. IEEE 103(2), 143–146 (2015). https://doi.org/10.1109/JPROC.2015.2388958
Y. Lu, Cyber physical system (Cps)-based industry 4.0: A survey. J. Ind. Integr. Manag. 2(3) (2017b). https://doi.org/10.1142/S2424862217500142
Y. Lu, Industry 4.0: A survey on Technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017). https://doi.org/10.1016/j.jii.2017.04.005
H. Lasi, P. Fettke, G. Kemper, T. Feld, M. Hoffmann, Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4
S. Li, L.D. Xu, S. Zhao, 5G internet of things: A survey. J. Ind. Inf. Integr. 10, 1–9 (2018). https://doi.org/10.1016/j.jii.2018.01.005
J. Wang, W. Zhang, Y. Shi, S. Duan, J. Liu, Industrial big data analytics: challenges, methodologies, and applications. IEEE Trans. Automat. Sci. Eng. 1–12 (2018)
S. Ganschar, M. Gerlach, T. Hammerle, S. Krause, in Arbeit der Zukunft – Mensch und. Produktionsarbeit Der Zukunft-Industrie 4.0, 2013, ed. by D. Spath, pp. 50–56
H. Chen, Applications of cyber-physical system: A literature review. J. Ind. Integr. Manag. 2(3), 2424–8622 (2017b). https://doi.org/10.1142/S2424862217500129
H. Chen, Theoretical foundations for cyber-physical systems: A literature review. J. Ind. Integr. Manag. 2(3), 2424–8630 (2017). https://doi.org/10.1142/S2424862217500130
J. Lee, H. Ardakani, S. Yang, B. Bagheri, Industrial big data analytics and cyber-physical Systems for Future Maintenance & service innovation. Proc. CIRP 38, 3–7 (2015). https://doi.org/10.1016/j.procir.2015.08.026
E. Lee, in Cyber Physical Systems: Design Challenges. Object Oriented Real-Time Distributed Computing (ISORC), (2008), pp. 363–369
L. Xu, Editorial: inaugural issue. Enterp. Inf. Syst. 1(1), 1–2 (2007). https://doi.org/10.1080/17517570712331393320
J. Lee, E. Lapira, B. Bagheri, H. Kao, Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 1(1), 38–41 (2013). https://doi.org/10.1016/j.mfglet.2013.09.005
M. Baily, J. Manyka, Is Manufacturing ‘Cool’ Again (McKinsey Global Institute, 2013), Retrieved 18 July 2019
Y. Chen, H. Chen, A. Gorkhali, Y. Lu, Y. Ma, L. Li, Big data analytics and big data science: A survey. J. Manag. Anal. 3(2), 1–42 (2016). https://doi.org/10.1080/23270012.2016.1141332
The rise of industrial big data. (2012). GE Intelligent Platforms
What is Big Data? | Big Data Definition | V’s of Big Data. (2018). Retrieved 7 18, 2019, from https://www.edureka.co/blog/what-is-big-data/
D. Laney, 3-D Data Management: Controlling Data Volume, Velocity and Variety (META Group, 2001). Research Note
A. Mauro, M. Greco, M. Grimaldi, A formal definition of big data based on its essential features. Libr. Rev. 65(3), 122–135 (2016). https://doi.org/10.1108/LR-06-2015-0061
M. Schroeck, R. Shockley, J. Smart, D. Romero-Morrales, P. Tufano, Analytics: The Real-World Use of Big (IBM Global Business Services, 2012). Retrieved from https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=
J. Dijcks, Oracle: Big Data for the Enterprise. Oracle White Paper, (2012), Retrieved from http://www.oracle.com/us/products/
H. Karimipour, A. Rahimnezhad, H. Rouzba, Smart households demand response management with micro grid. arXiv 1, –7 (2019c)
H. Karimipour, V. Dinavahi, Parallel domain decomposition based distributed state estimation for large-scale power systems. IEEE Trans. Ind. Appl. 52(2), 1265–1269 (2016)
H. Karimipour, V. Dinavahi, Extended Kalman filter based massively parallel dynamic state estimation. IEEE Trans. Smart Grid 6(3), 1539–1549 (2015)
Y. Zhong, X. Xu, L. Wang, IoT-enabled smart factory visibility and traceability using laser-scanners. Proc. Manuf. 10, 1–14 (2017). https://doi.org/10.1016/j.promfg.2017.07.103
Y. Zhang, T. Qu, O. Ho, G. Huang, Real-time work-in-progress management for smart object-enabled ubiquitous shop-floor environment. Int. J. Comput. Integr. Manuf. 24(5), 431–445 (2011). https://doi.org/10.1080/0951192X.2010.527374
A. Dehghantanha, A. Azmoodeh, K. Choo, Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1), 88–95 (2019a)
H. Said, T. Nicoletti, P. Perez, Utilizing telematics data to support effective equipment Fleet-management decisions: utilization rate and Hazard functions. J. Comput. Civ. Eng., 1–11 (2015). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000444
Y. Xu, M. Chen, Improving just-in-time manufacturing operations by using internet of things based solutions. Procedia CIRP 56, 326–331 (2016). https://doi.org/10.1016/j.procir.2016.10.030
A. Dehghantanha, T. Dargahi, S. Grooby, A bibliometric analysis of authentication and access control in IoT devices, in Handbook of big data and IoT security, (Springer, 2019b), pp. 25–51. https://doi.org/10.1007/978-3-030-10543-3_3
A. Dehghantanha, M. Conti, K.W. Franke, Internet of things security and forensics: Challenges and opportunities. Futur. Gener. Comput. Syst., 544–546 (2018a). https://doi.org/10.1016/j.future.2017.07.060
M. Friendly, The Golden age of statistical graphics. Stat. Sci. 23(4), 502–535 (2008). https://doi.org/10.1214/08-STS268
K. Vassakis, E. Petrakis, I. Kopanakis, Big Data Analytics: Applications, Prospects and Challenges, in Mobile Big Data, (Emmanuel Petrakis’s Lab, 2017). https://doi.org/10.1007/978-3-319-67925-9_1
H. Karimipour, A. Dehghantanha, J. Sakhnini, in Smart Grid Cyber Attacks Detection Using Supervised Learning and Heuristic Feature Selection. IEEE Int. Conf. on Smart Energy Grid Engineering (SEGE) (2019a), pp. 1–5
H. Karimipour, S. Mohammadi, V. Desai, Multivariate mutual information feature selection for intrusion detection. IEEE Canada Electr. Power Energy Conf. (EPEC), 1–6 (2018)
A. Vijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, P. Warndorf, in Improving Machine Tool Interoperability Using Standardized Interface Protocols: MT Connect. International Symposium on Flexible Automation, (2008), pp. 1–6
GilPress. (2017, 10 1). What’s The Big Data? (Venturebeat) Retrieved 08 13, 2019, from The Chatbots Landscape: https://whatsthebigdata.com/2017/10/01/the-chatbots-landscape/
P. Gölzer, P. Cato, M. Amberg, Data Processing Requirements of Industry 4.0 - Use Cases for Big Data Applications (Association for Information Systems (AISeL), 2015)
E. Hewitt, Cassandra: The Definitive Guide (O’Reilly Media, Inc., Sebastopol, 2011)
E. Anderson, X. Li, M. Shah, J. Tucek, J. Wylie, What Consistency Does Your Key-Value Store Actually Provide? (Hewlett-Packard Laboratories, 2009), pp. 1–6
K. Chodorow, S. Bradshaw, MongoDB: The Definitive Guide, in Powerful and Scalable Data Storage, 3rd edn., (O’Reilly Media, 2019), p. 425
H. Kagermann, J. Helbig, A. Hellinger, W. Wahlster, Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0, in Securing the Future of German Manufacturing Industry, (Forschungsunion, Acatech, 2013)
M. Santos, B. Martinho, C. Costa, Modelling and implementing big data warehouses for decision support. J. Manag. Anal. 4(2), 111–129 (2016). https://doi.org/10.1080/23270012.2017.1304292
L. Xu, N. Liang, Q. Gao, An integrated approach for agricultural ecosystem management - IEEE journals & magazine. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 590–599 (2008). https://doi.org/10.1109/TSMCC.2007.913894
K. Shvachko, H. Kuang, S. Radia, R. Chansler, in The Hadoop Distributed File System. IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), 2010, pp. 1–10. doi:https://doi.org/10.1109/MSST.2010.5496972
G. Jagannathan, R. Wright, in Research Track Poster Privacy-Preserving Distributed k-Means Clustering over Arbitrarily Partitioned Data *. Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (2005), pp. 593–599. https://doi.org/10.1145/1081870.1081942
Y. Yao, Q. Cao, A. Vasilakos, EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Trans. Networking 23(3), 810–823 (2015). https://doi.org/10.1109/TNET.2014.2306592
A. Dehghantanha, O. Osanaiye, H. Cai, K.X. Choo, Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing. EURASIP J. Wirel. Commun. Netw., 1–20 (2016). https://doi.org/10.1186/s13638-016-0623-3
F. Tao, L. Zhang, V. Venkatesh, Y. Luo, Y. Cheng, Cloud manufacturing: A computing and service-oriented manufacturing model. Proc. Inst. Mech. Eng. B J. Eng. 225(10), 1969–1976 (2011)
X. Xu, From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 28(1), 75–86 (2012). https://doi.org/10.1016/j.rcim.2011.07.002
B. Daniel, Big data and analytics in higher education: Opportunities and challenges. Br. J. Educ. Technol. 46(5), 904–920 (2015). https://doi.org/10.1111/bjet.2015.46.issue-5
D. Delen, H. Demirkan, Data, information and analytics as services. Decis. Support. Syst. 55(1), 359–363 (2013). https://doi.org/10.1016/j.dss.2012.05.044
H.B. Karimipour, F. Derakhshan, in A Layered Intrusion Detection System for Critical Infrastructure Using Machine Learning. IEEE Int. Conf. on Smart Energy Grid Engineering (SEGE), (2019), pp. 1–5
W.P. Elderton, Tables for testing the goodness of fit of theory to observation. Biometrika 1(2), 155–163 (1902)
K. Pearson, Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 58, 240–242 (1895). https://doi.org/10.1098/rspl.1895.0041
A. Kramer, J. Green, J.T. Pollard, Causal analysis approaches in ingenuity pathway analysis | bioinformatics | Oxford Academic. Bioinformatics 30(4), 523–530 (2014). https://doi.org/10.1093/bioinformatics/btt703
J. Pearl, Simpson’s paradox, confounding, and collapibility (Cambridge University Press, Cambridge, 2000), pp. 173–200
S. Kleinberg, B. Mishra, The Temporal Logic of Causal Structures, in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, (AUAI Press, 2009), pp. 303–312
R. Agrawal, R. Srikant, in Fast Algorithms for Mining Association Rules. Proceedings of 20th International Conference Very Large Data Bases, 15(1215), 487–499 (1994)
J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation. ACM Sigmod Rec. 29(2), 1–12 (2000)
M. Zaki, Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000). https://doi.org/10.1109/69.846291
L. Duan, W. Street, Finding maximal fully-correlated itemsets in large databases. ICDM 9, 770–775 (2009)
E.R. Lapira, Fault Detection in a Network of Similar Machines Using Clustering Approach. Doctoral Dissertation, University of Cincinnati, 2012
H. Karimipour, A. Dehghantanha, R. Parizi, K. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 7 (2019b). https://doi.org/10.1109/ACCESS.2019.2920326
A. Jalowiechki, P. Klusek, W. Skarka, The methods of knowledge acquisition in the product lifecycle for a generative model’s creation process. Proc. Manuf. 11, 2219–2226 (2017). https://doi.org/10.1016/j.promfg.2017.07.369
L. Alleman, L. Lamaison, P. Esperanza, PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 96(4), 612–625 (2010). https://doi.org/10.1016/j.atmosres.2010.02.008
C.J. Kuo, D. Chen, L. Yang, H. Chen, Automatic machine status prediction in the era of industry 4.0: Case study of Machines in a Spring Factory. J. Syst. Archit. 81, 44–53 (2017). https://doi.org/10.1016/j.sysarc.2017.10.007
B. Bagheri, H. Ahmadi, R. Labbafi, Implementing discrete wavelet transform and artificial neural networks for acoustic condition monitoring of gearbox. Elixir Mech 35, 2909–2911 (2011)
J. Neter, M. Kutner, C. Nachtsheim, W. Wasserman, Applied Linear Statistical Models, 5th edn. (McGraw-Hill Irwin, New York, 1996), pp. 1–1415
D. Hosmer, S.S. Lemeshow, Applied Logistic Regression, 3rd edn. (Wiley, Hoboken, 2013)
P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29(2), 103–130 (1997). https://doi.org/10.1023/A:1007413511361
N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn. 29(2), 131–163 (1997). https://doi.org/10.1023/A:1007465528199
M. Hagan, D. Howard, M. Beale, O. De Jesus, Neural Network Design, 2nd edn. (Martin Hagan, 2014)
A. Dehghantanha, H. Haddad Pajouh, R. Khayami, K. Choo, A deep recurrent neural network based approach for internet of things malware threat hunting. Futur. Gener. Comput. Syst. 85, 88–96 (2018b). https://doi.org/10.1016/j.future.2018.03.007
J. Suykens, J. Vandewalle, Least squares support vector machine classifiers. Neural. Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742
B. Boser, I. Guyon, V. Vapnik, in A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, (1992), pp. 144–152
M. Maggio, H. Hoffmann, A. Papadopoulos, Comparison of decision-making strategies for self-optimization in autonomic computing systems. ACM Trans. Auton. Adapt. Syst. 7(4) (2012). https://doi.org/10.1145/2382570.2382572
P. Bogdan, in A Cyber-Physical Systems Approach to Personalized Medicine: Challenges and Opportunities for NoC-Based Multicore Platforms. Design, Automation & Test in Europe Conference & Exhibition (DATE), (2015), pp. 2553–2258. https://doi.org/10.7873/DATE.2015.1127
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Al-Abassi, A., Karimipour, H., HaddadPajouh, H., Dehghantanha, A., Parizi, R.M. (2020). Industrial Big Data Analytics: Challenges and Opportunities. In: Choo, KK., Dehghantanha, A. (eds) Handbook of Big Data Privacy. Springer, Cham. https://doi.org/10.1007/978-3-030-38557-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-38557-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38556-9
Online ISBN: 978-3-030-38557-6
eBook Packages: Computer ScienceComputer Science (R0)