Skip to main content

Adaptive GVNS Heuristics for Solving the Pollution Location Inventory Routing Problem

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2019)

Abstract

This work proposes Adaptive General Variable Neighborhood Search metaheuristic algorithms for the efficient solution of Pollution Location Inventory Routing Problems (PLIRPs). A comparative computational study, between the proposed methods and their corresponding classic General Variable Neighborhood Search versions, illustrates the effectiveness of the intelligent mechanism used for automating the re-ordering of the local search operators in the improvement step of each optimization method. Results on 20 PLIRP benchmark instances show the efficiency of the proposed metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antoniadis, N., Sifaleras, A.: A hybrid CPU-GPU parallelization scheme of variable neighborhood search for inventory optimization problems. Electron. Notes Discrete Math. 58, 47–54 (2017)

    Article  MathSciNet  Google Scholar 

  2. Cheng, C., Yang, P., Qi, M., Rousseau, L.M.: Modeling a green inventory routing problem with a heterogeneous fleet. Transp. Res. Part E 97, 97–112 (2017)

    Article  Google Scholar 

  3. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric TSP. Eur. J. Oper. Res. 129, 555–568 (2001)

    Article  MathSciNet  Google Scholar 

  4. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Burke, E., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, chap. 12, pp. 313–337. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-6940-7

    Google Scholar 

  5. Hansen, P., Mladenovic, N., Todosijevic, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5, 423–454 (2017)

    Article  MathSciNet  Google Scholar 

  6. Huber, S., Geiger, M.: Order matters - a variable neighborhood search for the swap-body vehicle routing problem. Eur. J. Oper. Res. 263, 419–445 (2017)

    Article  MathSciNet  Google Scholar 

  7. Karakostas, P., Sifaleras, A., Georgiadis, M.C.: Basic VNS algorithms for solving the pollution location inventory routing problem. In: Sifaleras, A., Salhi, S., Brimberg, J. (eds.) ICVNS 2018. LNCS, vol. 11328, pp. 64–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15843-9_6

    Chapter  Google Scholar 

  8. Karakostas, P., Sifaleras, A., Georgiadis, C.: A general variable neighborhood search-based solution approach for the location-inventory-routing problem with distribution outsourcing. Comput. Chem. Eng. 126, 263–279 (2019)

    Article  Google Scholar 

  9. Li, K., Tian, H.: A two-level self-adaptive variable neighborhood search algorithm for the prize-collecting vehicle routing problem. Appl. Soft Comput. 43, 469–479 (2016)

    Article  Google Scholar 

  10. Sifaleras, A., Konstantaras, I.: General variable neighborhood search for the multi-product dynamic lot sizing problem in closed-loop supply chain. Electron. Notes Discrete Math. 47, 69–76 (2015)

    Article  MathSciNet  Google Scholar 

  11. Skouri, K., Sifaleras, A., Konstantaras, I.: Open problems in green supply chain modeling and optimization with carbon emission targets. In: Pardalos, P.M., Migdalas, A. (eds.) Open Problems in Optimization and Data Analysis. SOIA, vol. 141, pp. 83–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99142-9_6

    Chapter  MATH  Google Scholar 

  12. Todosijevic, R., Mladenovic, M., Hanafi, S., Mladenovic, N., Crevits, I.: Adaptive general variable neighborhood search heuristics for solving the unit commitment problem. Electr. Power Energy Syst. 78, 873–883 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

The second author has been funded by the University of Macedonia Research Committee as part of the “Principal Research 2019” funding scheme (ID 81307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Georgiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karakostas, P., Sifaleras, A., Georgiadis, M.C. (2020). Adaptive GVNS Heuristics for Solving the Pollution Location Inventory Routing Problem. In: Matsatsinis, N., Marinakis, Y., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2019. Lecture Notes in Computer Science(), vol 11968. Springer, Cham. https://doi.org/10.1007/978-3-030-38629-0_13

Download citation

Publish with us

Policies and ethics