Skip to main content

Half-Empty or Half-Full? A Hybrid Approach to Predict Recycling Behavior of Consumers to Increase Reverse Vending Machine Uptime

  • Conference paper
  • First Online:
Exploring Service Science (IESS 2020)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 377))

Included in the following conference series:

Abstract

Reverse Vending Machines (RVMs) are a proven instrument for facilitating closed-loop plastic packaging recycling. A good customer experience at the RVM is crucial for a further proliferation of this technology. Bin full events are the major reason for Reverse Vending Machine (RVM) downtime at the world leader in the RVM market. The paper at hand develops and evaluates an approach based on machine learning and statistical approximation to foresee bin full events and, thus increase uptime of RVMs. Our approach relies on forecasting the hourly time series of returned beverage containers at a given RVM. We contribute by developing and evaluating an approach for hourly forecasts in a retail setting – this combination of application domain and forecast granularity is novel. A trace-driven simulation confirms that the forecasting-based approach leads to less downtime and costs than naïve emptying strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ellen MacArthur Foundation: The New Plastics Economy - Rethinking the future of plastics (2016)

    Google Scholar 

  2. Waste Management Review: NSW litter reduced by a third with help from Return and Earn. http://wastemanagementreview.com.au/nsw-litter-reduce-third/

  3. Taylor, S.: Waiting for service: the relationship between delays and evaluations of service. J. Mark. 58, 56 (1994)

    Article  Google Scholar 

  4. TOMRA System ASA: Key Facts. https://www.tomra.com/en/news-and-media/key-facts

  5. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)

    Article  Google Scholar 

  6. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)

    Article  Google Scholar 

  7. March, S.T., Smith, G.F.: Design and natural science research on information technology. Decis. Support Syst. 15, 251–266 (1995)

    Article  Google Scholar 

  8. Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8, 312–335 (2007)

    Google Scholar 

  9. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice, 2nd edn. OTexts, Melbourne (2018). OTexts.com/fpp2

  10. Aburto, L., Weber, R.: Improved supply chain management based on hybrid demand forecasts. Appl. Soft Comput. J. 7, 136–144 (2007)

    Article  Google Scholar 

  11. Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30, 1030–1081 (2014)

    Article  Google Scholar 

  12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  13. Bergmeir, C., Benítez, J.M.: On the use of cross-validation for time series predictor evaluation. Inf. Sci. (NY) 191, 192–213 (2012)

    Article  Google Scholar 

  14. Peffers, K., Rothenberger, M., Tuunanen, T., Vaezi, R.: Design science research evaluation. In: Proceedings of the 7th International Conference on Design Science Research in Information Systems: Advances in Theory and Practice, pp. 398–410 (2012)

    Google Scholar 

  15. Hasin, M.A.A., Ghosh, S., Shareef, M.A.: An ANN approach to demand forecasting in retail trade in Bangladesh. Int. J. Trade Econ. Finance 2, 154–160 (2011)

    Article  Google Scholar 

  16. Taylor, J.W.: Forecasting daily supermarket sales using exponentially weighted quantile regression. Eur. J. Oper. Res. 178, 154–167 (2007)

    Article  Google Scholar 

  17. Thiesing, F.M., Vornberger, O.: Sales forecasting using neural networks. In: International Conference on Neural Networks, pp. 2125–2128 (1997)

    Google Scholar 

  18. Kim, K.J.: Financial time series forecasting using support vector machines. Neurocomputing 55, 307–319 (2003)

    Article  Google Scholar 

  19. Wang, J.J., Wang, J.Z., Zhang, Z.G., Guo, S.P.: Stock index forecasting based on a hybrid model. Omega 40, 758–766 (2012)

    Article  Google Scholar 

  20. Sfetsos, A.: A comparison of various forecasting techniques applied to mean hourly wind speed series. Renew. Energy 21, 23–35 (2000)

    Article  Google Scholar 

  21. Sfetsos, A., Coonick, A.H.: Univariate and multivariate forecasting of hourly radiation with artificial intelligence techniques. Sol. Energy 68, 169–178 (2000)

    Article  Google Scholar 

  22. Li, Y., Zheng, Y., Zhang, H., Chen, L.: Traffic prediction in a bike-sharing system. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advanced Geographic Information Systems - GIS 2015, pp. 1–10 (2015)

    Google Scholar 

  23. Fan, S., Chen, L.: Short-term load forecasting based on an adaptive hybrid method. Power Syst. IEEE Trans. 21, 392–401 (2006)

    Article  Google Scholar 

  24. Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., Obersteiner, M.: Forecasting electricity spot-prices using linear univariate time-series models. Appl. Energy 77, 87–106 (2004)

    Article  Google Scholar 

  25. Kristiansen, T.: Forecasting Nord Pool day-ahead prices with an autoregressive model. Energy Policy 49, 328–332 (2012)

    Article  Google Scholar 

  26. Murray, K.B., Di Muro, F., Finn, A., Popkowski Leszczyc, P.: The effect of weather on consumer spending. J. Retail. Consum. Serv. 17, 512–520 (2010)

    Article  Google Scholar 

  27. Parsons, A.G.: The association between daily weather and daily shopping patterns. Australas. Mark. J. 9, 78–84 (2001)

    Article  MathSciNet  Google Scholar 

  28. Gutierrez, R.S., Solis, A.O., Mukhopadhyay, S.: Lumpy demand forecasting using neural networks. Int. J. Prod. Econ. 111, 409–420 (2008)

    Article  Google Scholar 

  29. Chopra, S., Meindl, P.: Supply Chain Management: Strategy, Planning, and Operation. Pearson Education, Inc., London (2007)

    Google Scholar 

  30. Ghobbar, A.A., Friend, C.H.: Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Comput. Oper. Res. 30, 2097–2114 (2003)

    Article  Google Scholar 

  31. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting (2016)

    Google Scholar 

  32. Kaggle Inc.: Kaggle. https://www.kaggle.com

  33. Gross, C.W., Sohl, J.E.: Disaggregation methods to expedite product line forecasting. J. Forecast. 9, 233–254 (1990)

    Article  Google Scholar 

  34. Kolassa, S.: Evaluating predictive count data distributions in retail sales forecasting. Int. J. Forecast. 32, 788–803 (2016)

    Article  Google Scholar 

  35. Bergmeir, C., Hyndman, R.J., Koo, B.: A note on the validity of cross-validation for evaluating time series prediction. Monash University, Working Papers 10/15 (2015)

    Google Scholar 

  36. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Sargent, R.G.: Verification and validation of simulation models. J. Simul. 7, 12–24 (2013)

    Article  Google Scholar 

  38. Shmueli, G., Koppius, O.R.: Predictive analytics in information systems research. MIS Q. 35, 553–572 (2011)

    Article  Google Scholar 

  39. Govindan, K., Soleimani, H., Kannan, D.: Reverse logistics and closed-loop supply chain: a comprehensive review to explore the future. Eur. J. Oper. Res. 240, 603–626 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannis Walk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walk, J., Hirt, R., Kühl, N., Hersløv, E.R. (2020). Half-Empty or Half-Full? A Hybrid Approach to Predict Recycling Behavior of Consumers to Increase Reverse Vending Machine Uptime. In: Nóvoa, H., Drăgoicea, M., Kühl, N. (eds) Exploring Service Science. IESS 2020. Lecture Notes in Business Information Processing, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-38724-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38724-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38723-5

  • Online ISBN: 978-3-030-38724-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics