Abstract
Good, efficient and reliable public transportation systems are of crucial importance for all major cities today. In this paper, we propose a concrete solution to a particular problem: improve the prediction of the bus arrival time at each bus stop station on a given itinerary, by taking to account global and local traffic contexts. The main principle consists of modeling the traffic data as an image structure, adapted for applying CNN deep neural networks. The results obtained shows that the proposed approach outperforms traditional machine learning techniques, such as OLS (Ordinary Least Squares) or SVR (Support Vector Regression) with different kernels (RBF or Polynomial), with more than 18% better accuracy prediction, while being computationally faster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
SOeS: Mars 2015 Chiffres clés du transport
Azlan, N.N.N., Rohani, M.M.: Overview of application of traffic simulation model. In: MATEC Web Conference, vol. 150, p. 03006 (2018). https://doi.org/10.1051/matecconf/201815003006
Geroliminis, N., Daganzo, C.F.: Macroscopic modeling of traffic in cities (2007)
Toledo, T., Koutsopoulos, H., Ben-Akiva, M., Jha, M.: Microscopic traffic simulation: models and application. In: Simulation Approaches in Transportation Analysis, pp. 99–130. Springer, New York. https://doi.org/10.1007/0-387-24109-4_4
Balmer, M., Rieser, M.: MATSim-T: architecture and simulation times. In: Multi-Agent Systems for Traffic and Transportation Engineering (2009). https://doi.org/10.1140/epjb/e2008-00153-6
Fellendorf, M., Vortisch, P.: Microscopic traffic flow simulator VISSIM. In: Fundamentals of Traffic Simulation (2010). https://doi.org/10.1007/978-1-4419-6142-6_2
Rickert, M., Nagel, K.: Dynamic traffic assignment on parallel computers in TRANSIMS. Future Gener. Comput. Syst. 17, 637–648 (2001). https://doi.org/10.1016/S0167-739X(00)00032-7
Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5, 128–138 (2012)
Panovski, D., Zaharia, T.: Simulation-based vehicular traffic lights optimization. In: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 258–265. IEEE (2016). https://doi.org/10.1109/SITIS.2016.49
Lin, Y., Yang, X., Zou, N., Jia, L.: Real-time bus arrival time prediction: case study for Jinan, China. J. Transp. Eng. 139, 1133–1140 (2013). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000589
As, M., Mine, T.: Dynamic bus travel time prediction using an ANN-based model. In: Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication - IMCOM 2018, pp. 1–8. ACM Press, New York (2018). https://doi.org/10.1145/3164541.3164630
Petersen, N.C., Rodrigues, F., Pereira, F.C.: Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Syst. Appl. 120, 426–435 (2019). https://doi.org/10.1016/j.eswa.2018.11.028
Google Maps. https://www.google.com/maps
Citymapper - The Ultimate Transport App. https://citymapper.com/paris
Schanzenbacher, F., Chevrier, R., Farhi, N.: Fluidification du traffic Transilien : approach prédictive et optimisation quadratique, 2p (2016)
Munich Transport and Tariff Association | MVV. https://www.mvv-muenchen.de/
Karimpour, M., Karimpour, A., Kompany, K., Karimpour, A.: Online traffic prediction using time series: a case study. In: Constanda, C., Dalla Riva, M., Lamberti, P.D., Musolino, P. (eds.) Integral Methods in Science and Engineering, Volume 2, pp. 147–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59387-6_15
Kumar, S.V., Vanajakshi, L.: Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur. Transp. Res. Rev. 7, 21 (2015). https://doi.org/10.1007/s12544-015-0170-8
Zhang, N., Zhang, Y., Lu, H.: Seasonal autoregressive integrated moving average and support vector machine models. Transp. Res. Rec. J. Transp. Res. Board. 2215, 85–92 (2011). https://doi.org/10.3141/2215-09
Mir, Z.H., Filali, F.: An adaptive Kalman filter based traffic prediction algorithm for urban road network. In: 2016 12th International Conference on Innovations in Information Technology (IIT), pp. 1–6. IEEE (2016). https://doi.org/10.1109/INNOVATIONS.2016.7880022
Panovski, D., Scurtu, V., Zaharia, T.: Simulation and prediction of public transportation with maps of local density blobs. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–4. IEEE (2019). https://doi.org/10.1109/ICCE.2019.8661921
Panovski, D., Scurtu, V., Zaharia, T.: A neural network-based approach for public transportation prediction with traffic density matrix. In: 2018 7th European Workshop on Visual Information Processing (EUVIP), pp. 1–6. IEEE (2018). https://doi.org/10.1109/EUVIP.2018.8611683
Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transp. Res. Part C Emerg. Technol. 85, 591–608 (2017). https://doi.org/10.1016/J.TRC.2017.10.016
Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: A generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 777–785. Society for Industrial and Applied Mathematics (2017)
Ma, X., Dai, Z., He, Z., Na, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)
Fouladgar, M., Parchami, M., Elmasri, R., Ghaderi, A.: Scalable deep traffic flow neural networks for urban traffic congestion prediction. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2251–2258. IEEE (2017). https://doi.org/10.1109/IJCNN.2017.7966128
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks (2019)
Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting (2017)
Webmaster: Tan - Ma vie sans arrêt - tan.fr
Accueil—Open Data Nantes Métropole. https://data.nantesmetropole.fr/pages/home/
Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M.: An introduction to OpenStreetMap in geographic information science: experiences, research, and applications. In: Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M. (eds.) OpenStreetMap in GIScience. LNGC, pp. 1–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14280-7_1
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Paszke, A., et al.: Automatic differentiation in PyTorch (2017). https://openreview.net/forum?id=BJJsrmfCZ
Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, Hoboken (2003)
Undefined: support vector regression (2004). cmlab.csie.ntu.edu.tw. Science, M.W.-D. of C., of, U
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Ching, T., Eddelbuettel, D.: RcppMsgPack: messagepack headers and interface functions for R (2018)
Acknowledgment
Part of this work has been carried out within the framework of the French FUI project ETS (Electronic Ticketing System), supported by the Conseil Départemantal de l’Essonne and the Systematic Paris Region competitivity cluster.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Panovski, D., Zaharia, T. (2020). Public Transportation Prediction with Convolutional Neural Networks. In: Martins, A., Ferreira, J., Kocian, A. (eds) Intelligent Transport Systems. From Research and Development to the Market Uptake. INTSYS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 310. Springer, Cham. https://doi.org/10.1007/978-3-030-38822-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-38822-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38821-8
Online ISBN: 978-3-030-38822-5
eBook Packages: Computer ScienceComputer Science (R0)