Skip to main content

Directional Grid-Based Search for Simulation Metamodeling Using Active Learning

  • Conference paper
  • First Online:
Intelligent Transport Systems. From Research and Development to the Market Uptake (INTSYS 2019)

Abstract

Within dense urban environments, real-world transportation systems are often associated with extraordinary modeling complexity. Where standard analytic methods tend to fail, simulation tools emerge as reliable approaches to study such systems. Despite their versatility, simulation models can prove to be computational burdens, exhibiting prohibitive simulation runtimes. To address this shortcoming, metamodels are used to aid in the simulation modeling process.

In this paper, we propose a directional training scheme, combining both active learning and simulation metamodeling, to address the challenge of exploring the input space, within the context of computationally expensive simulation models. Using a Gaussian Process (GP) as a simulation metamodel, we guide the exploration process towards the identification of specific regions of the input space that trigger a particular simulation output search value of interest defined a priori by the user, saving a significant amount of simulation time in the process.

The results obtained from applying our methodology to an Emergency Medical Service (EMS) simulator, show that it is capable of identifying such important input regions while minimizing the number of simulation runs at the same time, thus making the simulation input space exploration process more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amorim, M., Ferreira, S., Couto, A.: Emergency medical service response: analyzing vehicle dispatching rules. Trans. Res. Rec.: J. Transp. Res. Board 2672(32), 10–21 (2018). https://journals.sagepub.com/doi/abs/10.1177/0361198118781645. https://journals.sagepub.com/toc/trra/2672/32

    Article  Google Scholar 

  2. Amorim, M., Ferreira, S., Couto, A.: Corrigendum to how do traffic and demand daily changes define urban emergency medical service (uEMS) strategic decisions?: A multi-period survival approach. J. Transp. Health 12, 60–74 (2019). p. 100570

    Article  Google Scholar 

  3. Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)

    Article  MathSciNet  Google Scholar 

  4. Antunes, F., Amorim, M., Pereira, F., Ribeiro, B.: Active learning metamodeling for policy analysis: application to an emergency medical service simulator. Simul. Model. Pract. Theory 97, 101947 (2019)

    Article  Google Scholar 

  5. Barton, R.R.: Simulation metamodels. In: Simulation Conference Proceedings, Winter, vol. 1, pp. 167–174. IEEE (1998)

    Google Scholar 

  6. Boukouvalas, A.: Emulation of random output simulators. Ph.D. thesis, Aston University (2010)

    Google Scholar 

  7. Boukouvalas, A., Cornford, D., Singer, A.: Managing uncertainty in complex stochastic models: design and emulation of a rabies model. In: 6th St. Petersburg Workshop on Simulation, pp. 839–841 (2009)

    Google Scholar 

  8. Chen, T., Hadinoto, K., Yan, W., Ma, Y.: Efficient meta-modelling of complex process simulations with time-space-dependent outputs. Comput. Chem. Eng. 35(3), 502–509 (2011)

    Article  Google Scholar 

  9. Chilès, J.-P., Desassis, N.: Fifty years of Kriging. In: Daya Sagar, B.S., Cheng, Q., Agterberg, F. (eds.) Handbook of Mathematical Geosciences, pp. 589–612. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78999-6_29

    Chapter  Google Scholar 

  10. Conti, S., O’Hagan, A.: Bayesian emulation of complex multi-output and dynamic computer models. J. Stat. Plan. Infer. 140(3), 640–651 (2010)

    Article  MathSciNet  Google Scholar 

  11. Friedman, L.W.: The Simulation Metamodel. Springer, Heidelberg (2012)

    Google Scholar 

  12. Friedman, L.W., Pressman, I.: The metamodel in simulation analysis: can it be trusted? J. Oper. Res. Soc. 39(10), 939–948 (1988)

    Article  Google Scholar 

  13. Haghani, A., Yang, S.: Real-time emergency response fleet deployment: concepts, systems, simulation & case studies. In: Zeimpekis, V., Tarantilis, C.D., Giaglis, G.M., Minis, I. (eds.) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 133–162. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-71722-7_7

    Chapter  Google Scholar 

  14. Jagtenberg, C., van den Berg, P., van der Mei, R.: Benchmarking online dispatch algorithms for emergency medical services. Eur. J. Oper. Res. 258(2), 715–725 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  16. Kleijnen, J.P.: A comment on blanning’s “metamodel for sensitivity analysis: the regression metamodel in simulation”. Interfaces 5(3), 21–23 (1975)

    Article  Google Scholar 

  17. Kleijnen, J.P.: Regression metamodels for generalizing simulation results. IEEE Trans. Syst. Man Cybern. 9, 93–96 (1979)

    Article  Google Scholar 

  18. Kleijnen, J.P.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kleijnen, J.P., Van Beers, W.C.: Application-driven sequential designs for simulation experiments: Kriging metamodelling. J. Oper. Res. Soc. 55(8), 876–883 (2004)

    Article  Google Scholar 

  20. Kleijnen, J.P., Van Beers, W.C.: Robustness of Kriging when interpolating in random simulation with heterogeneous variances: some experiments. Eur. J. Oper. Res. 165(3), 826–834 (2005)

    Article  MathSciNet  Google Scholar 

  21. Kleijnen, J.: Model behaviour: regression metamodel summarization. Encycl. Syst. Control 5, 3024–3030 (1987)

    Google Scholar 

  22. Law, A.M.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill Higher Education, New York City (2015)

    Google Scholar 

  23. Ling, C.K., Low, K.H., Jaillet, P.: Gaussian process planning with Lipschitz continuous reward functions: towards unifying Bayesian optimization, active learning, and beyond. In: AAAI, pp. 1860–1866 (2016)

    Google Scholar 

  24. Martine, G., Marshall, A., et al.: State of world population 2007: unleashing the potential of urban growth. In: State of World Population 2007: Unleashing the Potential of Urban Growth. UNFPA (2007)

    Google Scholar 

  25. United Nations: The World’s Cities in 2016, Data Booklet, ST/ESA/SER.A/392. Department of Economic and Social Affairs, Population Division (2016)

    Google Scholar 

  26. Pons, P.T., Markovchick, V.J.: Eight minutes or less: does the ambulance response time guideline impact trauma patient outcome? J. Emerg. Med. 23(1), 43–48 (2002)

    Article  Google Scholar 

  27. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  28. Settles, B.: Active Learning: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Clay Pool, Long Island (2012)

    MATH  Google Scholar 

  29. Van Beers, W.C., Kleijnen, J.P.C.: Kriging for interpolation in random simulation. J. Oper. Res. Soc. 54(3), 255–262 (2003)

    Article  Google Scholar 

  30. Wang, X., Zhai, J.: Learning from Uncertainty. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  31. Yang, S., Hamedi, M., Haghani, A.: Online dispatching and routing model for emergency vehicles with area coverage constraints. Transp. Res. Rec. 1923(1), 1–8 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The support of FCT (Portuguese national funding agency for science, research, and technology) under grant No. PD/BD/128047/2016 is greatly acknowledged. This work has additionally received funding from the People Programme (Marie Curie Actions) of the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Individual Fellowship H2020-MSCA-IF-2016, ID number 745673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antunes, F., Pereira, F., Ribeiro, B. (2020). Directional Grid-Based Search for Simulation Metamodeling Using Active Learning. In: Martins, A., Ferreira, J., Kocian, A. (eds) Intelligent Transport Systems. From Research and Development to the Market Uptake. INTSYS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 310. Springer, Cham. https://doi.org/10.1007/978-3-030-38822-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38822-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38821-8

  • Online ISBN: 978-3-030-38822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics