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Abstract. A substring u of a string T is called a minimal unique sub-
string (MUS) of T if u occurs exactly once in T and any proper substring
of u occurs at least twice in T . A string w is called a minimal absent
word (MAW) of T if w does not occur in T and any proper substring
of w occurs in T . In this paper, we study the problems of computing
MUSs and MAWs in a sliding window over a given string T . We first
show how the set of MUSs can change in a sliding window over T , and
present an O(n log σ)-time and O(d)-space algorithm to compute MUSs
in a sliding window of width d over T , where σ is the maximum number
of distinct characters in every window. We then give tight upper and
lower bounds on the maximum number of changes in the set of MAWs
in a sliding window over T . Our bounds improve on the previous results
in [Crochemore et al., 2017].

1 Introduction

Processing massive string data is a classical and important task in theoretical
computer science, with a variety of applications such as data compression, bioin-
formatics, and text data mining. It is natural and common to assume that such
a massive string is given in an online fashion, one character at a time from left to
right, and that the memory usage is limited to some pre-determined space. This
is a so-called sliding window model, where the task is to process all substrings
T [i..i + d − 1] of pre-fixed length d in a string T of length n in an incremental
fashion, for increasing i = 1, . . . , n−d+1. Usually the window size d is set to be
much smaller than the string length n, and thus the challenge here is to design
efficient algorithms that processes all such substrings using only O(d) working
space. A typical application to the sliding window model is data compression;
examples are the famous Lempel-Ziv 77 (the original version) [15] and PPM [2].

In this paper, we study the following classes of strings in the sliding win-
dow model: Minimal Unique Substrings (MUSs) and Minimal Absent Words
(MAWs). MUSs have been heavily utilized for solving the Shortest Unique Sub-
string (SUS ) problem [10,13,6,8], and MAWs have applications to data compres-
sion based on anti-dictionaries [3,9]. However, despite the fact that there is a
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common application field to MUSs and MAWs such as bioinformatics [5,10,1,12],
to our knowledge, these two objects were considered to be quite different and
were studied separately. This paper is the first that brings a light to their sim-
ilarities by observing that a string w is a MUS (resp. MAW) of a string S if
the number of occurrences of w in S is one (resp. zero), and the number of
occurrences of any proper substring of w is at least two (resp. at least one).

We begin with combinatorial results on MUSs in a sliding window. Namely,
we show that the number of MUSs that are added or deleted by one slide of the
window is always O(1) (Section 3). We then present the first efficient algorithm
that maintains the set of MUSs for a sliding window of length d over a string
of length n in a total of O(n log σ) time and O(d) working space (Section 4).
Our main algorithmic tool is the suffix tree for a sliding window that requires
O(d) space and can be maintained in O(n log σ) time [7,11]. Our algorithm for
computing MUSs in a sliding window is built on our combinatorial results, and
it keeps track of three different loci over the suffix tree, all of which can be
maintained in O(log σ) amortized time per each sliding step.

MAWs in a sliding window have already been studied by Crochemore et
al. [4]. They studied the number of MAWs to be added / deleted when the
current window is shifted, and we improve some of these results (Section 5): For
any string T over an alphabet of size σ, let MAW(T [i..j]) be the set of all MAWs
in the substring T [i..j]. Crochemore et al. [4] showed that |MAW(T [i..i + d]) \
MAW(T [i..i + d − 1])| ≤ (si − sα)(σ − 1) + σ + 1 and |MAW(T [i − 1..i + d −
1]) \MAW(T [i..i+ d − 1])| ≤ (pi − pβ)(σ − 1) + σ + 1, where si, sα, pi, and pβ
are the lengths of the longest repeating suffix of T [i..i + d − 1], of the longest
suffix of T [i..i + d − 1] having an internal occurrence immediately followed by
α = T [i+ d], of the longest repeating prefix of T [i..i+ d− 1], and of the longest
prefix of T [i..i+ d − 1] having an internal occurrence immediately preceded by
β = T [i−1]. Since both si−sα and pi−pβ are in Θ(d) in the worst case, it leads
to an O(σd) upper bound. We improve this by showing that both |MAW(T [i..i+
d])\MAW(T [i..i+d−1])| and |MAW(T [i−1..i+d−1])\MAW(T [i..i+d−1])| are
at most d+σ′+1, where σ′ is the number of distinct characters in T [i..i+d−1].
Since σ′ ≤ d, this leads to an improved O(d) upper bound. We also show that

this is tight. Crochemore et al. [4] also showed that
∑n−d

i=1 |MAW(T [i..i+d−1])△
MAW(T [i+1..i+d])| ∈ O(σn). We give an improved upper bound O(min{σ, d}n)
and show that this is tight.

All the proofs omitted due to lack of space can be found in Appendix C.

2 Preliminaries

Strings. Let Σ be an alphabet. An element of Σ is called a character. An
element of Σ∗ is called a string. The length of a string T is denoted by |T |.
The empty string ε is the string of length 0. If T = xyz, then x, y, and z are
called a prefix, substring, and suffix of T , respectively. They are called a proper
prefix, proper substring, and proper suffix of T if x 6= T , y 6= T , and z 6= T ,
respectively. If a string b is a prefix of T and is a suffix of T , b is called a
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border of T . For any 1 ≤ i ≤ |T |, the i-th character of T is denoted by T [i].
For any 1 ≤ i ≤ j ≤ |T |, T [i..j] denote the substring of T starting at i and
ending at j. For convenience, T [i′..j′] = ε for i′ > j′. For any 1 ≤ i ≤ |T |, let
T [..i] = T [1..i] and T [i..] = T [i..|T |]. For a string w, the set of beginning positions
of occurrences of w in T is denoted by occT (w) = {i | T [i..i+ |w| − 1] = w}. Let
#occT (w) = |occT (w)|. For convenience, let #occT (ε) = |T |+1. In what follows,
we consider an arbitrarily fixed string T of length n ≥ 1 over an alphabet Σ of
size σ ≥ 2.
Minimal Unique Substrings and Minimal Absent Words. Any string w is
said to be absent from T if #occT (w) = 0, and present in T if #occT (w) ≥ 1. For
any substring w of T , w is called unique in T if #occT (w) = 1, quasi-unique in
T if 1 ≤ #occT (w) ≤ 2, and repeating in T if #occT (w) ≥ 2. A unique substring
w of T is called a minimal unique substring of T if any proper substring of w
is repeating in T . Since a unique substring w of T has exactly one occurrence
in T , it can be identified with a unique interval [s, t] such that 1 ≤ s ≤ t ≤ n
and w = T [s..t]. We denote by MUS(T ) = {[s, t] | T [s..t] is a MUS of T } the
set of intervals corresponding to the MUSs of T . From the definition of MUSs,
it is clear that [s, t] ∈ MUS(T ) if (a) T [s..t] is unique in T , (b) T [s + 1..t] is
repeating in T , and (c) T [s..t − 1] is repeating in T . See Fig. 6 in Appendix D
for an example of MUSs.

An absent string w from T is called a minimal absent word of T if any proper
substring of w is present in T . We denote by MAW(T ) the set of all MAWs of T .
From the definition of MAWs, it is clear that w ∈ MAW(T ) if (A) w is absent
from T , (B) w[2..] is present in T , and (C) w[..|w| − 1] is present in T .

This paper deals with the problems of computing MUSs / MAWs in a sliding
window of fixed length d over a given string T , formalized as follows:

Input: String T of length n and positive integer d (< n).
Output for the MUS problem: MUS(T [i..i+d−1]) for all 1 ≤ i ≤ n−d+1.
Output for the MAW problem: MAW(T [i..i+d−1]) for all 1 ≤ i ≤ n−d+1.

Suffix trees. The suffix tree of a string T , denoted STreeT , is a compacted
trie that represents all suffixes of T . We consider a version of suffix trees a.k.a.
Ukkonen trees [14]: Namely, STreeT is a rooted tree such that (1) each edge
is labeled by a non-empty substring of T , (2) each internal node has at least
two children, (3) the out-going edges of each node begin with mutually distinct
characters, (4) the suffixes of T that are unique in T are represented by paths
from the root to the leaves, and the other suffixes of T that are repeating in T
are represented by paths from the root that end either on internal nodes or on
edges. To simplify the description of our algorithm, we assume that there is an
auxiliary node ⊥ which is the parent of only the root node. The out-going edge
of ⊥ is labeled with Σ; This means that we can go down from ⊥ by reading any
character in Σ. See Fig. 7 in Appendix D for an example of STreeT .

For each node v in STreeT , par (v) denotes the parent of v, str(v) denotes
the path string from the root to v, depth(v) denotes the string depth of v (i.e.
depth(v) = |str(v)|), and subtree(v) denotes the subtree of STreeT rooted at v.
For each leaf ℓ in STreeT , start(ℓ) denotes the starting position of str(ℓ) in T .
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For each non-empty substring w of T , hed(w) = v denotes the highest explicit
descendant where w is a prefix of str(v) and depth(par (v)) < |w| ≤ depth(v). For
each substring w of T , locus(w) = (u, h) represents the locus in STreeT where
the path that spells out w from the root terminates, such that u = hed(w) and
h = depth(u)− |w| ≥ 0. We say that a substring w of T with locus(w) = (u, h)
is represented by an explicit node if h = 0, and by an implicit node if h ≥ 1.
We remark that in the Ukkonen tree STree(T ) of a string T , some repeating
suffixes may be represented by implicit nodes. An implicit node which represents
a suffix of T is called an implicit suffix node. For any non-empty substring w
that is represented by an explicit node v, the suffix link of v is a reversed edge
from v to the explicit node that represents w[2..]. The suffix link of the root that
represents ε points to ⊥.

3 Combinatorial Results on MUSs in a Sliding Window

Throughout this section, we consider positions i, j (1 ≤ i ≤ j ≤ n) such that
T [i..j] denotes the sliding window for the i-th position over the input string T .
The following arguments hold for any values of i and j, and hence, they will be
useful for sliding windows of any length d.

Let lrs i,j be the longest repeating suffix of T [i..j], sqsi,j be the shortest quasi-
unique suffix of T [i..j], and sqpi,j be the shortest quasi-unique prefix of T [i..j].
Note that lrs i,j can be the empty string, and that both sqs i,j and sqpi,j are
always non-empty strings. See Fig. 6 in Appendix D for examples.

The next lemmas are useful for analyzing combinatorial properties on MUSs
and for designing an efficient algorithm for computing them in a sliding window.

Lemma 1. The following three statements are equivalent: (1) |lrs i,j | ≥ |sqs i,j |;
(2) #occT [i..j](lrs i,j) = 2; (3) #occT [i..j](sqs i,j) = 2.

Lemma 2. |lrs i,j+1| ≤ |lrs i,j |+ 1.

3.1 Changes to MUSs when Appending a Character to the Right

In this subsection, we consider an operation that slides the right-end of the
current window T [i..j] with one character by appending the next character T [j+
1] to T [i..j]. We use the following observation.

Observation 1. For each non-empty substring s of T [i..j], #occT [i..j+1](s) ≤
#occT [i..j](s) + 1. Also, #occT [i..j+1](s) = #occT [i..j](s) + 1 if and only if s is a
suffix of T [i..j + 1].

MUSs to be Deleted when Appending a Character to the Right. Due
to Observation 1, we obtain Lemma 3 which describes MUSs to be deleted when
a new character T [j + 1] is appended to the current window T [i..j].

Lemma 3. For any [s, t] with i ≤ s < t ≤ j, [s, t] ∈ MUS(T [i..j]) and [s, t] 6∈
MUS(T [i..j+1]) if and only if T [s..t] = sqs i,j+1 and #occT [i..j+1](sqs i,j+1) = 2.
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Proof. (⇒) Let w = T [s..t]. Since [s, t] ∈ MUS(T [i..j]) and [s, t] 6∈ MUS(T [i..j +
1]), #occT [i..j](w) = 1 and #occT [i..j+1](w) ≥ 2. It follows from Observation 1
that #occT [i..j+1](w) = 2 and w is a suffix of T [i..j+1]. If we assume that w is a
proper suffix of sqs i,j+1, then #occT [i..j+1](w) ≥ 3 by the definition of sqs i,j+1,
but this contradicts with #occT [i..j+1](w) = 2. If we assume that sqs i,j+1 is a
proper suffix of w, then #occT [i..j](sqs i,j+1) ≥ #occT [i..j](T [s+ 1..t]) ≥ 2. Also,
#occT [i..j+1](sqs i,j+1) = #occT [i..j](sqs i,j+1) + 1 ≥ 3 by Observation 1, but this
contradicts with the definition of sqs i,j+1. Therefore, we obtain w = sqs i,j+1.
Moreover, #occT [i..j+1](sqs i,j+1) = 2 since w = sqsi,j+1 is a substring of T [i..j].
(⇐) Since w = T [s..t] is a suffix of T [i..j + 1] and #occT [i..j+1](w) = 2, w is
unique in T [i..j]. By the definition of sqsj+1, a proper suffix w[2..] = T [s+ 1..t]
of w = sqsi,j+1 occurs at least three times in T [i..j + 1], i.e. T [s + 1..t] is
repeating in T [i..j] (see also Fig. 8 in Appendix D for illustration). Also, a prefix
w[..|w|− 1] = T [s..t− 1] of w = sqs i,j+1 is clearly repeating in T [i..j]. Therefore,
w = T [s..t] is a MUS of T [i..j] and is not a MUS of T [i..j + 1]. ⊓⊔

By Lemma 3, at most one MUS can be deleted when appending T [j + 1] to
the current window T [i..j], and such a deleted MUS must be sqs i,j+1.

MUSs to be Added when Appending a Character to the Right. First,
we consider a MUS to be added when appending T [j + 1] to T [i..j], which is a
suffix of T [i..j + 1]. The next observation follows from the definition of lrs i,j :

Observation 2. If [s, j] ∈ MUS(T [i..j]), then s = j − |lrs i,j |. Namely, if there
is a MUS of T [i..j] that is a suffix of T [i..j], then it must be the suffix of T [i..j]
that is exactly one character longer than lrs i,j .

Lemma 4. [j+1−k, j+1] ∈ MUS(T [i..j+1]) if and only if T [j+1−k..j+1] =
αk+1 or k ≤ |lrs i,j |, where k = |lrs i,j+1| and α = T [j + 1].

Proof. (⇒) Assume on the contrary that T [j + 1 − k..j + 1] 6= αk+1 and k >
|lrs i,j |. By the assumptions and Lemma 2, |lrs i,j | = k − 1, and thus, T [j −
|lrs i,j |..j] = T [j + 1 − k..j]. Since T [j + 1 − k..j + 1] is a MUS of T [i..j + 1],
T [j + 1 − k..j] = T [j − |lrs i,j |..j] occurs at least twice in T [i..j + 1]. On the
other hand, T [j − |lrs i,j |..j] is unique in T [i..j] by the definition of lrs i,j , hence
T [j−|lrsi,j |..j] occurs in T [i..j+1] as a suffix of T [i..j+1]. Consequently, we have
T [j−|lrsi,j |..j] = T [j+1−|lrsi,j |..j+1], i.e. T [j−k..j+1] = T [j+1−k..j+1] =
αk+1 with α = T [j + 1], a contradiction.
(⇐) By definition, T [j + 2 − k..j + 1] = lrs i,j+1 is repeating in T [i..j + 1] and
T [j+1−k..j+1] is unique in T [i..j+1]. Now it suffices to show T [j+1−k..j] is
repeating in T [i..j+1]. If T [j+1−k..j+1] = αk+1, then clearly T [j+1−k..j] = αk

is repeating in T [i..j + 1]. If k ≤ |lrs i,j |, then T [j + 1 − k..j] is a suffix of
T [j+1−|lrsi,j |..j] (see Fig. 9 in Appendix D). Thus #occT [i..j+1](T [j+1−k..j]) ≥
#occT [i..j](T [j + 1− k..j]) ≥ #occT [i..j](T [j + 1− |lrs i,j |..j]) ≥ 2. ⊓⊔

Next, we consider MUSs to be added when appending T [j + 1] to T [i..j], which
are not suffixes of T [i..j + 1].
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Lemma 5. For each [s, t] ∈ MUS(T [i..j+1]) with t 6= j+1, if [s, t] 6∈ MUS(T [i..j])
then #occT [i..j+1](sqs i,j+1) = 2 and sqs i,j+1 is a proper substring of T [s..t].

Proof. Since t 6= j+1, T [s..t] is not a suffix of T [i..j+1]. Moreover, since [s, t] ∈
MUS(T [i..j+1]), T [s..t] is unique in T [i..j]. Since T [s..t] is not a MUS of T [i..j],
there exists a MUS u of T [i..j] which is a proper substring of T [s..t]. Assume
on the contrary that #occT [i..j+1](sqs i,j+1) = 1 or u 6= sqs i,j+1. Then, it follows
from Lemma 3 that u is a MUS of T [i..j + 1]. However, this contradicts with
[s, t] ∈ MUS(T [i..j + 1]). Therefore, #occT [i..j+1](sqs i,j+1) = 2 and u = sqs i,j+1

is a proper substring of T [s..t]. ⊓⊔

Namely, a MUS which is not a suffix is added by appending one character only
if there is a MUS to be deleted by the same operation. Moreover, such added
MUSs must contain the deleted MUS.

Lemma 6. If #occT [i..j+1](sqs i,j+1) = 2, then there are three integers pl, ps, q
such that i ≤ pl ≤ ps ≤ q < j + 1 and T [ps..q] = sqs i,j+1 and T [pl..q] = lrs i,j+1.
Also, the following propositions hold:

(a) If there is no MUS of T [i..j] ending at q+1, then [ps, q+1] ∈ MUS(T [i..j+1]).
(b) If there is no MUS of T [i..j] starting at pl−1 and pl ≥ i+1, then [pl−1, q] ∈

MUS(T [i..j + 1]).

Now we have the main result of this subsection:

Theorem 1. For any 1 ≤ i ≤ j < n, |MUS(T [i..j + 1]) △ MUS(T [i..j])| ≤ 4
and −1 ≤ |MUS(T [i..j + 1])| − |MUS(T [i..j])| ≤ 2. Furthermore, these bounds
are tight for any σ, i, j with σ ≥ 3, 1 ≤ i ≤ j < n, and j − i+ 1 ≥ 5.

3.2 Changes to MUSs when Deleting the Leftmost Character

In this subsection, we consider an operation that deletes the leftmost character
T [i − 1] from T [i − 1..j]. Basically, we can use symmetric arguments to the
previous subsection where we considered appending a character to the right of the
window. We omit the details here in the case of deleting the leftmost character,
but all necessary observations and lemmas are available in Appendix A.

The main result of this subsection is the following:

Theorem 2. For any 1 < i ≤ j ≤ n, |MUS(T [i − 1..j]) △ MUS(T [i..j])| ≤ 4
and −1 ≤ |MUS(T [i − 1..j])| − |MUS(T [i..j])| ≤ 2. Furthermore, these bounds
are tight for any σ, i, j with σ ≥ 3, 1 < i ≤ j ≤ n, and j − i+ 1 ≥ 5.

The next corollary is immediate from Theorem 1 and Theorem 2.

Corollary 1. Given a positive integer d < n. For every i with 1 ≤ i ≤ n − d,
|MUS(T [i..i+ d− 1])△MUS(T [i+ 1..i+ d])| ∈ O(1).

4 Algorithm for computing MUSs in a Sliding Window

This section presents our algorithm for computing MUSs in a sliding window.
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4.1 Updating a Suffix Tree and Three Loci in a Suffix Tree

First, we introduce some additional notions. Since we use Ukkonen’s algorithm [14]
for updating the suffix tree when a new character T [j + 1] is appended to the
right end of the window T [i..j], we maintain the locus for lrs i,j as in [14]. Also,
in order to compute the changes of MUSs, we use sqs i,j (c.f. Lemma 3 and
Lemma 6). Thus, we also maintain the locus for sqs i,j .

The locus for lrs i,j (resp. sqs i,j) in STreeT [i..j] is called the primary active
point (resp. the secondary active point) and is denoted by ppi,j (resp. spi,j).
Additionally, in order to maintain spi,j efficiently, we also maintain the locus for
the longest suffix of T [i..j] which occurs at least three times in T [i..j]. We call
this locus the tertiary active point that is denoted by tpi,j .

Appending One Character. When T [i..j] is the empty string (the base case,
where i = 1 and j = 0), we set all the three active points (root , 0). Then we
increase j, and the suffix tree grows in an online manner until j = d using
Ukkonen’s algorithm. Then, for each j > d, we also increase i each time j
increases, so that the sliding window is shifted to the right, by using sliding
window algorithm for the suffix tree [7,11].

When T [j + 1] is appended to the right end of T [i..j], we first update the
suffix tree to STreeT [i,,j+1] and compute ppi,j+1. Since ppi,j+1 coincides with the
active point, ppi,j+1 can be found in amortized O(log σ) time [14,7,11].

After updating the suffix tree, we can compute tpi,j+1 and spi,j+1 as follows:

1. Traverse character T [i+ 1] from tpi,j , and set w ← str(tpi,j)T [i + 1] which
is the suffix of T [i..j + 1] that is one character longer than tpi,j . Then, w
corresponds to a candidate for tpi,j+1.

2. While #occT [i..j+1](w) < 3, set w ← w[2..] and search for the locus for w by
using suffix links in STreeT [i..j+1]. This w is a new candidate for tpi,j+1.

3. After breaking the while-loop, obtain tpi,j+1 = locus(w) since w is the
longest suffix of T [i..j + 1] which occurs more than twice in T [i..j + 1].

4. Also, spi,j+1 equals the locus which is the very previous candidate for tpi,j+1.

As is described in the above algorithm, we can locate tpi,j+1 using suffix link, in
as similar manner to the active point ppi,j+1. Thus, the cost for locating tpi,j+1

for each increasing j is amortized O(log σ) time, again by a similar argument
to the active point (ppi,j+1). What remains is, for each candidate w for tpi,j+1,
how to quickly determine whether #occT [i..j+1](w) < 3 or not. In what follows,
we show that it can be checked in O(1) time for each candidate.

Observation 3. For each suffix s of a string T [i..j + 1], let locus(s) = (u, h).

Case 1. If u is an internal node, s occurs at least three times in T [i..j + 1].
Case 2. If u is a leaf and h = 0, s occurs exactly once in T [i..j + 1].
Case 3. If u is a leaf and h 6= 0,

Case 3.1. if there is a suffix s′ of T [i..j +1] with hed(s′) = hed(s) which is
longer than s, s occurs at least three times in T [i..j + 1] (see Fig. 10 in
Appendix D).
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Case 3.2. otherwise, s occurs exactly twice in T [i..j + 1].

For any suffix s of T [i..j + 1], if we are given locus(s) = (u, h), then we can
obviously determine in constant time whether s occurs at least three times in
T [i..j + 1] or not, except Case 3. The next lemma allows us to determine it in
constant time in Case 3.

Lemma 7. Suppose the locus ppi,j+1 in STreeT [i..j+1] is already computed. Given
a leaf ℓ of STreeT [i..j+1], it can be determined in O(1) time whether there is an
implicit suffix node on the edge (par (ℓ), ℓ) and if so, the locus of the lowest
implicit suffix node on (par (ℓ), ℓ) can be computed in O(1) time.

Deleting the Leftmost Character. When the leftmost character T [i − 1]
is deleted from T [i− 1..j], we first update the suffix tree and compute ppi,j by
using the sliding window algorithm for the suffix tree [7,11]. Each pair of position
pointers for the edge-labels of the suffix tree can be maintained in amortizedO(1)
time so that these pointers always refer to positions within the current sliding
window, by a simple batch update technique (see [11] for details). After that, we
compute tpi,j and spi,j in a similar way to the case of appending a new character
shown previously.

It follows from the above arguments in this subsection that we can update
the suffix tree and the three active points in amortized O(log σ) time, each time
the window is shifted by one character.

4.2 Computing sqpi−1,j

In order to compute the changes of MUSs when the leftmost character T [i− 1]
is deleted from T [i−1, j], we use sqpi−1,j (c.f. Lemma 17 and Lemma 19) before
updating the suffix tree. Thus, we present an efficient algorithm for computing
sqpi−1,j . First, we consider the following cases (see Fig. 11 in Appendix D),
where ℓ is the leaf corresponding to T [i− 1..j]:

Case A. hed(lrs i−1,j) = ℓ.
Case B. hed(lrs i−1,j) 6= ℓ and subtree(par(ℓ)) has more than two leaves.
Case C. hed(lrs i−1,j) 6= ℓ and subtree(par(ℓ)) has exactly two leaves.

For Case A, the next lemma holds:

Lemma 8. Given STreeT [i−1..j] and ppi−1,j. Let ℓ be the leaf corresponding to
T [i− 1..j]. If ppi−1,j is on the edge (par (ℓ), ℓ), the following propositions hold:

(a) occT [i−1..j](sqpi−1,j) = {i− 1, j − |lrs i−1,j |+ 1}.
(b) If there is exactly one implicit suffix node on (par (ℓ), ℓ), sqpi−1,j = T [i −

1..i− 1 + depth(par (ℓ))].
(c) If there are more than one implicit suffix node on (par (ℓ), ℓ), then |lrs i−1,j | >
⌊(j − i+ 2)/2⌋ and sqpi−1,j = T [i− 1..j − 2h+ 1], where ppi−1,j = (ℓ, h).

Proof. Let ppi−1,j = (ℓ, h) and L = |lrs i−1,j |.
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(a) Since ppi−1,j is on the edge (par (ℓ), ℓ), sqpi−1,j is a prefix of lrs i−1,j , and
#occT [i−1..j](lrs i−1,j) = #occT [i−1..j](sqpi−1,j) = 2. Therefore, we obtain
that occT [i−1..j](sqpi−1,j) = occT [i−1..j](lrs i−1,j) = {i− 1, j − L+ 1}.

(b) In this case, it is clear that sqpi−1,j = T [i− 1..i− 1 + depth(par(ℓ))].
(c) Let (ℓ, h′) be the locus of the implicit suffix node which is the lowest on the

edge (par(ℓ), ℓ) except ppi−1,j . Also, let x be the string corresponding to the
locus (ℓ, h′). In this case, x occurs exactly three times in T [i−1..j]. Also, x is
the longest border of lrs i−1,j . Assume on the contrary that L ≤ ⌊(j−i+2)/2⌋.
Then, two occurrences of lrs i−1,j in T [i − 1..j] are not overlapping, and
thus #occT [i−1..j](x) ≥ 2 ×#occT [i−1..j](lrs i−1,j) = 4, it is a contradiction.
Therefore, L > ⌊(j − i+ 2)/2⌋ (see Fig. 12 in Appendix D).
Next, we consider a relation between h and h′. By the definition, h = |T [i−
1..j]|−L = j− i+2−L. Since L > ⌊(j− i+2)/2⌋, x matches the intersection
of two occurrences of lrs i−1,j , i.e. x = T [j − L + 1..i + L − 2]. Thus, h′ =
|T [i − 1..j]| − |x| = j − i + 2 − (2L − j + i − 2) = 2(j − i + 2 − L) = 2h.
Therefore sqpi−1,j = T [i− 1..j − h′ + 1] = T [i− 1..j − 2h+ 1]. ⊓⊔

In Case B, it is clear that sqpi−1,j = T [i − 1..i − 1 + depth(p)] since str(p)
occurs at least three times in T [i− 1..j] (see Fig. 11 in Appendix D).

For Case C, the next lemma holds:

Lemma 9. Given STreeT [i−1..j] and ppi−1,j. Let ℓ be the leaf corresponding to
T [i − 1..j], p = par (ℓ), and q = par (p). If subtree(p) has exactly two leaves
and there are no implicit suffix nodes on any edges in subtree(p), then it can
be determined in O(1) time whether there is an implicit suffix node on (q, p). If
such an implicit node exists, then the locus of the lowest implicit suffix node on
(q, p) can be computed in O(1) time.

We can design an algorithm for computing sqpi−1,j by using the above lem-
mas, as follows. Let ℓ be the leaf corresponding to T [i − 1..j], p = par(ℓ) and
q = par(p).

In Case A. sqpi−1,j is computed by Lemma 8.
In Case B. sqpi−1,j = T [i−1..i−1+depth(p)] and #occT [i−1..j](sqpi−1,j) = 1.
In Case C. We divide this case into some subcases by the existence of an im-

plicit suffix node on edges (p, ℓ′) and (q, p) where ℓ′ is the sibling of ℓ. We first
determine the existence of an implicit suffix node on (p, ℓ′) (by Lemma 7).
– If there is an implicit suffix node on (p, ℓ′), then sqpi−1,j = T [i− 1..i−

1 + depth(p)] and #occT [i−1..j](sqpi−1,j) = 1.
– If there is no implicit suffix node on both (p, ℓ) and (p, ℓ′), we can de-

termine in constant time the existence of an implicit suffix node on
(q, p) (by Lemma 9). If there is an implicit suffix node on (q, p), sqpi−1,j =
T [i − 1..depth(p) − h + 1] and occT [i−1..j](sqpi−1,j) = {i − 1, start(ℓ′)}.
Otherwise, sqpi−1,j = T [i− 1..depth(q) + 1] and occT [i.−1.j](sqpi−1,j) =
{i− 1, start(ℓ′)}.

It follows from the above arguments in this subsection that sqpi−1,j can be
computed in O(1) time by using the suffix tree and the (primary) active point.
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4.3 Detecting MUSs to be Added/Deleted

By using the afore-mentioned lemmas in this section, we can design an efficient
algorithm for detecting MUSs to be added / deleted. The details of our algorithm
can be found in Appendix B.

The main result of this section is the following:

Theorem 3. We can maintain the set of MUSs in a sliding window of length
d on a string T of length n over an alphabet of size σ, in a total of O(n log σ)
time and O(d) working space.

Corollary 2. There exists an online algorithm to compute all MUSs in a string
T of length n over an alphabet of size σ in a total of O(n log σ) time with O(n)
working space.

5 Combinatorial Results on MAWs in a Sliding Window

5.1 Changes to MAWs when Appending Character to the Right

We consider the number of changes of MAWs when appending T [j+1] to T [i..j].
For the number of deleted MAWs, the next lemma is known:

Lemma 10 ([4]). For any 1 ≤ i ≤ j < n, |MAW(T [i..j])\MAW(T [i..j+1])| = 1.

Next, we consider the number of added MAWs. We classify each MAW w
in MAW(T [i..j + 1]) \MAW(T [i..j]) to the following three types3 (see Fig. 13 in
Appendix D). Let σ′ be the number of distinct characters occurring in T [i..j].

Type 1. w[2..] and w[..|w| − 1] are both absent from T [i..j].
Type 2. w[2..] is present in T [i..j] and w[..|w| − 1] is absent from T [i..j].
Type 3. w[2..] is absent from T [i..j] and w[..|w| − 1] is present in T [i..j].

We denote byM1,M2, andM3 the set of MAWs of Type 1, Type 2 and Type
3, respectively. The next lemma holds:

Lemma 11. For any 1 ≤ i ≤ j < n, |MAW(T [i..j+1])\MAW(T [i..j])| ≤ σ′+d,
where d = j − i+ 1.

Proof. In [4], it is shown that |M1| ≤ 1. It is also shown in [4] that the last
characters of all MAWs in M2 are all different. Furthermore, by the definition
ofM2, the last character of each MAW inM2 occurs in T [i..j]. Thus, |M2| ≤ σ′.
In the rest of the proof, we show that the number of MAWs of Type 3 is at most
d−1. We show that there is an injection f :M3 → [i, j−1] that maps each MAW
w ∈M3 to the ending position of the leftmost occurrence of w[..|w|−1] in T [i..j].
By the definition ofM3, w is absent from T [i..j + 1] and w[|w|] = T [j + 1] for
each w ∈ M3, and thus, no occurrence of w[..|w| − 1] in T [i..j] ends at position
j. Hence, the range of f does not contain the position j, i.e. it is [i..j− 1]. Next,

3 At least one of w[2..] and w[..|w|−1] is absent from T [i..j], because w 6∈ MAW(T [i..j]).
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for the sake of contradiction, we assume that f is not an injection, i.e. there are
two distinct MAWs w1, w2 ∈ M3 such that f(w1) = f(w2). W.l.o.g., assume
|w1| ≥ |w2|. Since w1[|w1|] = w2[|w2|] = T [j + 1] and f(w1) = f(w2), w2 is a
suffix of w1. If |w1| = |w2|, then w1 = w2 and it contradicts with w1 6= w2. If
|w1| > |w2|, then w2 is a proper suffix of w1, and it contradicts with the fact
that w2 is absent from T [i..j + 1] (see Fig. 14 in Appendix D). Therefore, f is
an injection and |M3| ≤ j − 1− i+ 1 = d− 1. ⊓⊔

The next lemma follows from Lemma 10 and Lemma 11.

Lemma 12. For any 1 ≤ i ≤ j < n, |MAW(T [i..j + 1]) △ MAW(T [i..j])| ≤
σ′ + d + 1, where d = j − i + 1. The upper bound is tight when σ ≥ 3 and
σ′ + 1 ≤ σ.

5.2 Changes to MAWs when Deleting the Leftmost Character

Next, we analyze the number of changes of MAWs when deleting the leftmost
character from a string. By a symmetric argument to Lemma 12, we obtain the
next lemma:

Lemma 13. For any 1 < i ≤ j ≤ n, |MAW(T [i..j]) △ MAW(T [i − 1..j])| ≤
σ′ + d+1 where d = j − i+1 and σ′ is the number of distinct characters occurs
in T [i..j]. Also, the upper bound is tight when σ ≥ 3 and σ′ + 1 ≤ σ.

Finally, by combining Lemma 12 and Lemma 13, we obtain the next corollary:

Corollary 3. Let d be the window length. For a string T of length n > d and
each integer i with 1 ≤ i ≤ n−d, |MAW(T [i..i+d−1])△MAW(T [i+1..i+d])| ∈
O(d). Also, there exists a string T ′ which satisfies |MAW(T ′[j..j + d − 1]) △
MAW(T ′[j + 1..j + d])| ∈ Ω(d) for some j with 1 ≤ j ≤ |T ′| − d.

5.3 Total Changes of MAWs when Sliding the Window on a String

In this subsection, we consider the total number of changes of MAWs when
sliding the window of length d from the beginning of T to the end of T . We
denote the total number of changes of MAWs by S(T, d) =

∑n−d
i=1 |MAW(T [i..i+

d− 1])△MAW(T [i+ 1..i+ d])|. The following lemma is known:

Lemma 14 ([4]). For a string T of length n > d over an alphabet Σ of size σ,
S(T, d) ∈ O(σn).

The aim of this subsection is to give a more rigorous bound for S(T, d). We
first show that the above bound is tight under some conditions.

Lemma 15. The upper bound of Lemma 14 is tight when σ ≤ d and n−d ∈ Ω(n)
(see Appendix C for a proof).

Next, we consider the case where σ ≥ d+ 1.
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Lemma 16. For a string T of length n > d over an alphabet Σ of size σ,
S(T, d) ∈ O(d(n − d)), and this upper bound is tight when σ ≥ d + 1 (see
Appendix C for a proof).

The main result of this section follows from the above lemmas:

Theorem 4. For a string T of length n > d over an alphabet Σ of size σ,
S(T, d) ∈ O(min{d, σ}n). This upper bound is tight when n− d ∈ Ω(n).

We remark that n−d ∈ Ω(n) covers most interesting cases for the window length
d, since the value of d can range from O(1) to cn for any 0 < c < 1.
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A Proofs for Theorem 2

In this appendix, we provide omitted proofs for Theorem 2.

Observation 4. For each non-empty substring s of T [i−1..j], #occT [i−1..j](s) ≤
#occT [i..j](s) + 1. Also, #occT [i−1..i](s) = #occT [i..j](s) + 1 if and only if s is a
prefix of T [i− 1..j].

MUSs to be Added when Deleting the Leftmost Character.

Lemma 17. For any i ≤ s ≤ t ≤ j, [s, t] 6∈ MUS(T [i − 1..j]) and [s, t] ∈
MUS(T [i..j]) if and only if T [s..t] = sqpi−1,j and #occT [i−1..j](sqpi−1,j) = 2.

Proof. Symmetric to the proof of Lemma 3. ⊓⊔

MUSs to be Deleted when Deleting the Leftmost Character. Next, we
consider MUSs to be deleted by removing T [i− 1] from T [i− 1..j]. If there is a
MUS w of T [i− 1..j] which is a prefix of T [i− 1..j], clearly, w is not a MUS of
T [i..j]. Then, we consider MUSs to be deleted each of which are not a prefix of
T [i− 1..j].

Lemma 18. For each [s, t] ∈ MUS(T [i−1, j]) with s 6= i−1, if [s, t] 6∈ MUS(T [i..j])
then #occT [i−1..j](sqpi−1,j) = 2 and sqpi−1,j is a proper substring of T [s..t].

Proof. Symmetric to the proof of Lemma 5. ⊓⊔

Namely, when deleting the leftmost character, a MUS which is not a prefix is
deleted only if an added MUS exists. Moreover, such deleted MUSs must contains
the added MUS.

Lemma 19. If #occT [i−1..j](sqpi−1,j) = 2, then following propositions hold:

(a) If there is a MUS w starting at s in T [i− 1..j], w is not a MUS of T [i..j],
(b) If there is a MUS w′ ending at t in T [i− 1..j], w′ is not a MUS of T [i..j],

where T [s..t] = sqpi−1,j and s 6= i− 1.

Proof. Symmetric to the proof of Lemma 6. ⊓⊔

Proof (of Theorem 2). Symmetric to the proof of Theorem 1. ⊓⊔
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B Detecting MUSs to be Added/Deleted

In this appendix, we present our algorithm for detecting MUSs to be added /
deleted.

Data Structure for Maintaining MUSs. First, we introduce a data structure
for managing the set of MUSs in a sliding window. Our data structure for MUSs
consists of two arrays S2E and E2S of length d each. Note that by the definition
of MUSs, any MUSs cannot be nested each other. Thus, for any text position
i, if a MUS starting (resp. ending) at i exists, then its ending (resp. starting)
position is a unique. From this fact, we can define S2E and E2S as follows:

Let [p, p+d−1] be the current window. For every index i with p ≤ i ≤ p+d−1,

S2E[(i− 1) mod d+ 1] =

{

e if [i, e] ∈ MUS(T [p..p+ d− 1]) exists,

nil otherwise.

E2S[(i− 1) mod d+ 1] =

{

s if [s, i] ∈ MUS(T [p..p+ d− 1]) exists,

nil otherwise.

Since MUSs cannot be nested each other, these arrays are uniquely defined (see
Fig. 1). By using these two arrays, all the following operations for MUSs can
be executed in O(1) time; add/remove a MUS into/from the set of MUSs, and
compute the ending/starting position of the MUS that starts/ends at a specified
position.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 …

T = b a b b a b a b a b b b b a …

…

nil nil 5 nil 9 nil nil nil 11 12

9 10 nil nil 3 nil nil nil 5 nil

MUSs  

in the window

 !"#

 #"!

The current window is �T[3..12]

circular_array.eps

Fig. 1. A long string T = babbabababbbba · · · and two arrays S2E and E2S. The
current window is T [3..12] of length d = 10, and the MUSs in the window are
T [3..5], T [5..9], T [9..11], and T [10..12].
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Algorithm when Appending a Character to the Right. Assume that S2E,
E2S and the suffix tree of T [i..j] are computed before reading γ = T [j+1]. Also,
assume that the longest single character run βe as a suffix of T [i..j] is known,
where β = T [j] and e ≥ 1.

– First, compute the length of lrs i,j .
– Second, read γ, and update the suffix tree and the active points. Then,

compute the lengths of lrs i,j+1 and sqs i,j+1. Also, update information about
the run of the last character of T [i..j + 1]. Specifically, if γ = β then βe =
γe+1, and otherwise βe = γ1. If |lrs i,j+1| ≤ |lrs i,j | or T [j+1− |lrs i,j+1|..j +
1] = γ|lrsi,j+1|+1, add [j + 1 − |lrs i,j+1|, j + 1] into the set of MUSs (by
Lemma 4).

– If |lrs i,j+1| < |sqs i,j+1|, then terminate this step (by Lemma 5).
– Otherwise, compute ps and q of Lemma 6 by using STree(T [i..j + 1]) and

spi,j+1. Then, remove [ps, q] from the set of MUSs (by Lemma 3).
– Next, if E2S[(t′− 1) mod d+1] = nil , then add [ps, t

′] into the set of MUSs,
where t′ = q + 1. Also, if s′ ≥ i and S2E[(s′ − 1) mod d− 1] = nil , then add
[s′, q] into the set of MUSs, where s′ = q − |lrs i,j+1| (by Lemma 6).

– Terminate this step.

Algorithm when Deleting the Leftmost Character. Assume that S2E,
E2S and the suffix tree of T [i− 1..j] are computed before deleting α = T [i− 1].

– First, compute #occT [i−1..j](sqpi−1,j). If #occT [i−1..j](sqpi−1,j) = 2, com-
pute two integers s and t with T [s..t] = sqpi−1,j and s 6= i− 1.

– Second, delete T [i − 1] and update the suffix tree and the active points. If
S2E[(i− 1− 1) mod d+1] 6= nil , remove the MUS starting at i− 1 from the
set of MUSs.

– If #occT [i−1..j](sqpi−1,j) = 1, terminate this step (by Lemma 18).
– Otherwise, if S2E[(s− 1) mod d+1] 6= nil , then remove the MUS starting at

s from the set of MUSs. Also, if E2S[(t − 1) mod d + 1] 6= nil , then remove
the MUS ending at t from the set of MUSs (by Lemma 19).

– Finally, add [s, t] into the set of MUSs (by Lemma 17), and terminate this
step.
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C Omitted Proofs

In this appendix, we provide proofs that are omitted due to lack of space.

Proof (of Lemma 1).
(1) ⇒ (2) and (3): Since |lrs i,j | ≥ |sqs i,j |, sqs i,j is a suffix of lrs i,j and thus
#occT [i..j](sqs i,j) ≥ #occT [i..j](lrs i,j). By the definitions of sqs i,j and lrs i,j ,
#occT [i..j](sqs i,j) ≤ 2 and #occT [i..j](lrs i,j) ≥ 2. Thus #occT [i..j](lrs i,j) =
#occT [i..j](sqs i,j) = 2.
(2) ⇒ (1): Since #occT [i..j](lrs i,j) = 2, the shortest suffix sqs i,j of T [i..j] that
occurs at most twice in T [i..j] cannot be longer than lrs i,j , i.e. |lrs i,j | ≥ |sqs i,j |.
(3) ⇒ (1): Since #occT [i..j](sqs i,j) = 2, the longest suffix lrs i,j of T [i..j] that
occurs at least twice in T [i..j] is at least as long as sqs i,j , i.e. |lrs i,j | ≥ |sqs i,j |.

⊓⊔

Proof (of Lemma 2). Assume on the contrary that |lrs i,j+1| > |lrs i,j |+1. By the
definition of lrs i,j+1, lrs i,j+1 = T [j + 2 − |lrs i,j+1|..j + 1] occurs at least twice
in T [i..j + 1]. Hence, T [j + 2 − |lrs i,j+1|..j] which is a proper prefix of lrs i,j+1

also occurs at least twice in T [i..j]. In addition, lrs i,j = T [j + 2− |lrs i,j |..j] is a
proper suffix of T [j+2− |lrs i,j+1|..j] since |lrs i,j+1| > |lrs i,j |+1. However, this
contradicts the definition of lrs i,j . Therefore, |lrs i,j+1| ≤ |lrs i,j |+ 1. ⊓⊔

pl ps q j j + 1

 lrsi,j+1

 sqs
i,j+1

T

Candidates for MUSs of �T[i . . j + 1]

for Lemma 6.

i

 lrsi,j+1

 sqs
i,j+1

MUS_candidates.eps

Fig. 2. Illustration of the situation when sqs i,j+1 is repeating in T [i..j + 1]. In this
situation, [pl − 1, q] and [ps, q + 1] are the only candidates for MUSs in MUS(T [i..j +
1]) \MUS(T [i..j]) each of which is not a suffix of T [i..j + 1].

Proof (of Lemma 6). By Lemma 1, #occT [i..j+1](lrs i,j+1) = 2 and sqs i,j+1 is a
suffix of lrs i,j+1 since #occT [i..j+1](sqs i,j+1) = 2. Hence, the ending position of
the occurrence of sqsi,j+1 in T [i..j] and that of lrs i,j+1 in T [i..j] are the same (see
Fig. 2). Next, we consider MUSs to be added.

(a) For the sake of contradiction, we assume that T [ps..q + 1] is repeating in
T [i..j + 1], then #occT [i..j+1](T [ps..q]) ≥ 3, and it contradicts the definition
of sqs i,j+1 (= T [ps..q]). Hence, T [ps..q + 1] is unique in T [i..j + 1]. Also,
T [ps..q] = sqs i,j+1 is repeating in T [i..j+1] clearly. In addition, T [ps+1..q+1]
is repeating in T [i..j] since [ps, q] ∈ MUS(T [i..j]) (by Lemma 3) and there is
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no MUS of T [i..j] ending at q+1. Thus, T [ps +1..q+1] is also repeating in
T [i..j + 1]. Therefore, T [ps..q + 1] is a MUS of T [i..j + 1].

(b) For the sake of contradiction, we assume that T [pl − 1..q] is repeating in
T [i..j+1]. Then T [pl−1] = T [j+1−|lrsi,j+1|] or #occT [i..j+1](T [pl..q]) ≥ 3.
If T [pl − 1] = T [j + 1− |lrs i,j+1|], it contradicts the definition of lrs i,j+1. If
#occT [i..j+1](T [pl..q]) ≥ 3, it contradicts #occT [i..j+1](lrs i,j+1) = 2. Thus,
T [pl − 1..q] is unique in T [i..j + 1]. Also, T [pl..q] = lrsi,j+1 is repeating in
T [i..j + 1] clearly. In addition, T [pl − 1..q − 1] is repeating in T [i..j], since
[ps, q] ∈ MUS(T [i..j]) (by Lemma 3), T [pl..q − 1] is repeating in T [i..j], and
there is no MUS of T [i..j] starting at pl−1. Thus, T [pl−1..q−1] is repeating
in T [i..j + 1]. Therefore, T [pl − 1..q] is a MUS of T [i..j + 1]. ⊓⊔

Proof (of Theorem 1).

(a) By Lemma 3, |MUS(T [i..j]) \MUS(T [i..j + 1])| ≤ 1. By Observation 2 and
Lemma 6, |MUS(T [i..j + 1]) \MUS(T [i..j])| ≤ 3. Thus, |MUS(T [i..j + 1])△
MUS(T [i..j])| = |MUS(T [i..j]) \ MUS(T [i..j + 1])| + |MUS(T [i..j + 1]) \
MUS(T [i..j])| ≤ 4.
Next, we show that the upper bound is tight if σ ≥ 3. For an integer k ≥ 2,
we consider two strings u and u′ such that u = a

k
bcc of length k + 3 ≥ 5

and u′ = ub = a
k
bccb of length k + 4 ≥ 6. Then, MUS(u) = {[1, k], [k +

1, k + 1], [k + 2, k + 3]} and MUS(u′) = {[1, k], [k, k + 1], [k + 1, k + 2], [k +
2, k + 3], [k + 3, k + 4]}. Therefore, |MUS(u′)△MUS(u)| = 4.

(b) By Lemma 3, it is clear that −1 ≤ |MUS(T [i..j + 1])| − |MUS(T [i..j])|. By
Observation 2, the number of added MUS which is a suffix of T [i..j + 1] is
at most one. Also, by Lemma 6, the number of added MUS which is not a
suffix of T [i..j + 1] is at most two, however, if such an added MUS exists,
exactly one MUS (= sqs i,j+1) must be deleted (c.f. Lemma 3 and Lemma 5).
Therefore, |MUS(T [i..j + 1])| − |MUS(T [i..j])| ≤ 2.
Next, we show that each bound is tight if σ ≥ 3. We consider strings u and u′

that are described in the case (a), and we then obtain |MUS(u′)|−|MUS(u)| =
2. On the other hand, for any integer ℓ with ℓ ≥ 1, we consider two strings v
and v′; v = a

ℓ
bcac of length ℓ+4 ≥ 5 and v = va = a

ℓ
bcaca of length ℓ+5 ≥

6. If ℓ = 1, then MUS(v) = {[2, 2], [3, 4], [4, 5]}, and MUS(v′) = {[2, 2], [4, 5]}.
If ℓ ≥ 2, then MUS(v) = {[1, ℓ], [ℓ+ 1, ℓ+ 1], [ℓ+ 2, ℓ+ 3], [ℓ+ 3, ℓ+ 4]}, and
MUS(v′) = {[1, ℓ], [ℓ+1, ℓ+1], [ℓ+3, ℓ+4]}. Therefore, |MUS(v′)|−|MUS(v)| =
−1. ⊓⊔

Proof (of Lemma 7). By Observation 3, for each leaf ℓ, the suffix corresponding
to the lowest implicit suffix node on (par (ℓ), ℓ) occurs exactly twice in T [i..j+1]
if such an implicit suffix node exists.

Let v = lrs i,j+1 and ppi,j+1 = (u, h). If u is not a leaf, there is no implicit
suffix node on the edge (par (ℓ), ℓ) for any leaf ℓ, since every suffix of T [i..j + 1]
which is shorter than |v| occurs more than twice in T [i..j + 1].

If u is a leaf, #occT [i..j+1](v) = 2. Let s = start(u) and tℓ = start(ℓ) for each
leaf ℓ. In the case of tℓ < s, we assume that there is an implicit suffix node on
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ℓ

u

 h

 | lrsi,j+1 |

 | lrsi,j+1 | − (t
ℓ

− s)

 depth(par(ℓ))

�start(u) = s

�start(ℓ) = t
ℓ

for Lemma 10.

 h

implicit.eps

Fig. 3. For an example of Lemma 7. The situation of this figure is that each of u and
ℓ is a leaf with tℓ = start(ℓ) ≥ s = start(u) and |lrs i,j+1| − (tℓ − s) > depth(par(ℓ))
where (u, h) represents the primary active point. Also, black nodes represent implicit
suffix nodes.

(par (ℓ), ℓ) for the sake of contradiction. Let w be a string corresponding to the
lowest implicit suffix node on (par (ℓ), ℓ). Then, w is a suffix of v, and occurs
exactly twice in T [i..j + 1]. Furthermore, w occurs exactly twice in T [s..j + 1].
However, w is a prefix of T [tℓ..j + 1], hence w occurs at least three times in
T [i..j + 1], it is a contradiction. Thus, if tℓ < s, there is no implicit suffix node
on (par (ℓ), ℓ). Finally, we consider the case of tℓ ≥ s (see Fig. 3). In this case,
T [tℓ..s+ |v| − 1] which is a prefix of T [tℓ..j + 1] matches the suffix of v which is
tℓ−s characters shorter than v, i.e. v[1+tℓ−s..]. Thus, there is an implicit suffix
node on (par (ℓ), ℓ) if and only if |T [tℓ..s+|v|−1]| = |v|−(tℓ−s) > depth(par(ℓ)).
Also, if there is an implicit suffix node on (par (ℓ), ℓ), the locus of the lowest one
is (ℓ, h). ⊓⊔

Proof (of Lemma 9). Note that the suffix corresponding to the lowest implicit
suffix node on (q, p) occurs exactly three times in T [i− 1..j] from assumptions.
Let ppi−1,j = (u, h). If h = 0, the primary active point is an explicit node, and
there is no implicit suffix node on every edge in STreeT [i−1..j]. If h 6= 0 and u = p,
the lowest implicit suffix node on (q, p) is clearly the primary active point. Thus,
in the following, we consider the situation with u 6= p and h 6= 0.

If u is not a leaf and the number of leaves in subtree(u) is greater than two,
then the number of leaves in subtree(hed(v)) is also greater than two for each
implicit suffix node v. Thus, there is no implicit suffix node on (q, p). If u is not a
leaf and the number of leaves in subtree(u) is exactly two, then lrs i−1,j occurs at
least three times in T [i− 1..j] since u 6= p. Thus, if a suffix s of T [i− 1..j] which
is shorter than lrs i−1,j occurs as a prefix of T [i − 1..j], #occT [i−1..j](s) ≥ 4,
therefore, there is no implicit suffix node on (q, p).

If u is a leaf, as in the proof in Lemma 7, it can be prove that there is an
implicit suffix node on (q, p) if and only if t ≥ s and depth(p) > |lrs i−1,j | − (t−
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ℓ

 depth(p)

�start(ℓ′ �) = t

SP2.eps

ℓ′ �
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q

 depth(q)
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i − 1

�start(ℓ) = i − 1

lrsi−1,j

n

sqp
i−1,j

x x

lrsi−1,j

sqp
i−1,j

Fig. 4. Illustration for Lemma 9.

s) > depth(q), where s = start(u), t = start(ℓ′) and ℓ′ be the sibling of ℓ (see
Fig. 4). In addition, the length of the string x corresponding to the lowest implicit
suffix node X on (q, p) is |lrs i−1,j | − (t− s), and thus, X = (p, depth(p)− |x|) =
(p, depth(p)− |lrs i−1,j |+ t− s), if such an implicit suffix node exists. ⊓⊔

Proof (of Lemma 12). By Lemma 10 and Lemma 11, we have |MAW(T [i..j+1])△
MAW(T [i..j])| = |MAW(T [i..j+1])\MAW(T [i..j])|+|MAW(T [i..j])\MAW(T [i..j+
1])| ≤ σ′ + d + 1. In the following, we show that the upper bound is tight, i.e.
there is a string z of length d and a character α where |MAW(z)△MAW(zα)| =
σ′ + d + 1 for any two integers d and σ′ with 1 ≤ σ′ ≤ d and σ′ + 1 ≤ σ.
Let Σ = {a1, a2, · · · , aσ} be an alphabet. Given two integers d and σ′ with

1 ≤ σ′ ≤ d and σ′ + 1 ≤ σ. We consider a string z = a1a2 · · ·aσ′−1a
d−σ′+1
σ′ of

length d and a character α = aσ′+1. Then, MAW(z) \ MAW(zα) = {α}. Also,
MAW(zα) \MAW(z) = {α2} ∪ {αai | 1 ≤ i ≤ σ′} ∪ {aiα | 1 ≤ i ≤ σ′ − 1} ∪
{aσ′−1a

e
σ′α | 1 ≤ e ≤ d− σ′}. Therefore, |MAW(z)△MAW(zα)| = σ′ + d+1. ⊓⊔

Proof (of Lemma 13). Symmetric to the proof of Lemma 12. ⊓⊔

Proof (of Lemma 15). If σ = 2, the lower bound S(T ′, d) ∈ Ω(n−d) = Ω(σ(n−
d)) is obtained by string T ′ = (ab)n/2.

In the sequel, we consider the case where σ ≥ 3. Let k be the integer
with (k − 1)(σ − 1) ≤ d < k(σ − 1). Note that k ≥ 2 since σ ≤ d. Let
Σ = {a1, a2, · · · , aσ} and α = aσ. We consider a string T ′ = Ue + U [..m]
where U = a1α

k−1a2α
k−1 . . . aσ−1α

k−1, e = ⌊ n
k(σ−1) ⌋, and m = n mod k(σ− 1).

Let c be a character that is not equal to α. For any two distinct occurrences
i1, i2 ∈ occT ′(c) for c, |i1 − i2| ≥ k(σ − 1) > d. Thus, any character c 6= α is
absent from at least one of two adjacent windows T ′[i..i+d−1] and T ′[i+1..i+d]
for every 1 ≤ i ≤ n− d.

Now we consider a window W = T [p − d..p − 1] where d + 1 ≤ p ≤ n
and T [p] = β 6= α. Let Π = {b1, b2, · · · , bπ, α} ⊂ Σ \ {β} be a set of all
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characters that occur in W . W.l.o.g., we assume that the current window is
W = αrb1α

k−1b2α
k−1 · · · bπα

k−1 and the next window is W ′ = W [2..]β where
r = d mod k (see Fig. 5). For any character b ∈ Π \ {b1, bπ, α}, bαℓβ is in
MAW(W ′) △ MAW(W ) for every 0 ≤ ℓ ≤ k − 1. If r > 0, b1α

ℓβ is also in
MAW(W ′)△MAW(W ) for every 0 ≤ ℓ ≤ k− 1. Otherwise, b1 is in MAW(W ′)△
MAW(W ) and b1α

ℓb2 is in MAW(W ′) △ MAW(W ) for every 0 ≤ ℓ ≤ k − 2
since b1 is absent from W ′. Also, β is in MAW(W ′)△MAW(W ) and bπα

ℓβ is in
MAW(W ′)△MAW(W ) for every 0 ≤ ℓ ≤ k− 2. Thus, at least (π− 2)k+ k+1+
(k−1) = πk MAWs are in MAW(W ′)△MAW(W ). Additionally, the number π of
distinct characters which occur inW and are not equal to α is at least ⌊(σ−1)/2⌋,
since k⌊(σ−1)/2⌋ ≤ k(σ−1)/2 = (k−k/2)(σ−1) ≤ (k−1)(σ−1) ≤ d. Therefore,
|MAW(W ′)△MAW(W )| ≥ πk ≥ ⌊(σ − 1)/2⌋k ∈ Ω(σk) = Ω(d). The number of
pairs of two adjacent windows W and W ′ where |MAW(W ′)△MAW(W )| ∈ Ω(d)
is Θ((n−d)/k). Therefore, we obtain S(T ′, d) ∈ Ω(d(n−d)/k) = Ω(σ(n−d)) =
Ω(σn) since n− d ∈ Ω(n). ⊓⊔

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T = b a a a c a a a d a a a b a a a c

�W = T[4..12]

MAW_total.eps

Σ = {a, b, c, d}, d = 9

�W′ � = T[5..13]

MAW(W)  = {aaaa, cc, cd, cad, caad, dd, dad, daad, daaad, dc, 

                       b, aac, cac, dac} 

MAW(W´) = {aaaa, cc, cd, cad, caad, dd, dad, daad, daaad, dc, 

                       ac, ba, bb, bc, bd, cb, cab, caab, caaab, db, dab, daab}

Fig. 5. Illustration of examples of MAWs in adjacent two windows. In this example,
σ = 4, d = 9, and k = 4. The size of the symmetric difference of MAW(W ) and
MAW(W ′) is |MAW(W )△MAW(W ′)| = |{b, aac, cac, dac, ac, ba, bb, bc, bd, cb, cab,
caab, caaab, db, dab, daab}| = 16.

Proof (of Lemma 16). By Corollary 3, it is clear that S(T, d) ∈ O(d(n − d)).
Next, we show that there is a string T ′ of length n > d such that S(T ′, d) ∈
Ω(d(n − d)) for any integer d with 1 ≤ d ≤ σ − 1. Let Σ = {a1, a2, · · · , aσ}.
We consider a string T ′ = (a1a2 · · · ad+1)

ea1a2 · · · ak where e = ⌊n/(d+ 1)⌋ and
k = n mod (d + 1). For each window W = T ′[i..i + d − 1] in T ′, W consists of
distinct d characters, and the character T ′[i + d] that is the right neighbor of
W is different from any of characters occur in W . W.l.o.g., we assume that the
current window is W = a1a2 · · ·ad and the next window is W ′ = W [2..]ad+1.
Then, |MAW(W ′)△MAW(W )| = |{ad+1}∪{ad+1ai | 2 ≤ i ≤ d}| = d. Therefore,
S(T ′, d) = d(n− d). ⊓⊔
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D Figures

In this appendix, we provide some supplemental figures.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T = b a b a b b a b a a b b b a

LS SS SP MUS

 lrs3,12

 sqs
3,12

 sqp
3,12

 !"#(T[3..12])

The current window is �T[3..12]
MUS_LS_SS_SP.eps

Fig. 6. String T = bababbabaabbba of length 14 and its substrings lrs3,12, sqs3,12, and
sqp3,12 for the current window T [3..12].
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Fig. 7. The suffix tree of string T = babbabaabb, where the suffix links are depicted
by broken arrows, the implicit suffix nodes are depicted by black circles, as well as the
three kinds of active points are marked. For example of other notions on the suffix tree,
substring w = abaab of T is considered here.
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deleted_MUS.eps

Fig. 8. Illustration for the case where #occT [i..j+1](sqs i,j+1) = 2. In this case, T [s..t] =
sqs i,j+1 is unique in T [i..j] and T [s+ 1..t] is repeating in T [i..j].
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suffix_MUS.eps

Fig. 9. Illustration for the case where |lrs i,j+1| ≤ |lrsi,j |. In this case, T [j + 1 −
|lrs i,j+1|..j + 1] is a MUS of T [i..j].
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• abbab is repeating in T. 
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Fig. 10. The suffix tree of string T = aabbabbab as an example of the Case 3.1 in
Observation 3. Black circles represent implicit suffix nodes. For two suffixes s = ab and
s′ = abbab of T , hed(s′) = hed(s) and s occurs three times in T .



Minimal Unique Substrings and Minimal Absent Words in a Sliding Window 23

SP_cases.eps

Lemma 9Lemma 8

Case A Case C

ℓ ℓ

primary active point 

candidate range for  

the locus for �  sqp
i−1,j

Case B

ℓ

locus for 

�sqp
i−1, j

ℓ′ �

p
p

p

q
q

q

Fig. 11. Illustration for the three cases that are described in Section 4.2.
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Fig. 12. Illustration for the proposition (c) in Lemma 8.
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Fig. 13. Illustration for the three types of MAWs, where w1 ∈ M1, w2 ∈ M2, and
w3 ∈ M3.
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j j + 1
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Fig. 14. Illustration for the contradiction in the proof of Lemma 11. Consider two
strings w1 = a1x1b1 and w2 = a2x2b2 that are MAWs of T of Type 3 where
a1, a2, b1, b2 ∈ Σ and x1, x2 ∈ Σ∗. If |w1| > |w2| and f(w1) = f(w2), then x2 is a
proper suffix of x1, and it contradicts that a2x2b2 is absent from T .
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