Skip to main content

Practical Implementation of a Quantum Backtracking Algorithm

  • Conference paper
  • First Online:
SOFSEM 2020: Theory and Practice of Computer Science (SOFSEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12011))

Abstract

In previous work, Montanaro presented a method to obtain quantum speedups for backtracking algorithms, a general meta-algorithm to solve constraint satisfaction problems (CSPs). In this work, we derive a space efficient implementation of this method. Assume that we want to solve a CSP with m constraints on n variables and that the domain in which these variables take their value is of cardinality d. Then, we show that the implementation of Montanaro’s backtracking algorithm can be done by using \(\mathcal {O}(n\log {d})\) data qubits. We detail an implementation of the predicate associated to the CSP with an additional register of \(\mathcal {O}(\log {m})\) qubits. We explicit our implementation for graph coloring and SAT problems, and present simulation results. Finally, we discuss the impact of the usage of static and dynamic variable ordering heuristics in the quantum setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01(04), 507–518 (2003). https://doi.org/10.1142/S0219749903000383

    Article  MATH  Google Scholar 

  2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007). https://doi.org/10.1137/S0097539705447311

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambainis, A., Kokainis, M.: Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games. In: Proceedings of the 49th STOC. ACM (2017). https://doi.org/10.1145/3055399.3055444

  4. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_14

    Chapter  Google Scholar 

  5. Belovs, A., Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: Time-efficient quantum walks for 3-distinctness. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 105–122. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_10

    Chapter  Google Scholar 

  6. Campbell, E., Khurana, A., Montanaro, A.: Applying quantum algorithms to constraint satisfaction problems. Quantum 3, 167 (2018). https://doi.org/10.22331/q-2019-07-18-167

    Article  Google Scholar 

  7. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th STOC. ACM (2003). https://doi.org/10.1145/780542.780552

  8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

    Article  MathSciNet  MATH  Google Scholar 

  10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  11. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation. Elsevier (2008). https://doi.org/10.1016/S1574-6526(07)03002-7

    Chapter  Google Scholar 

  12. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: a survey. In: Handbook of Combinatorial Optimization. Springer (1999) https://doi.org/10.1007/978-1-4757-3023-4_7

    Chapter  Google Scholar 

  13. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003). https://doi.org/10.1080/00107151031000110776

    Article  Google Scholar 

  14. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proceedings of the 39th STOC. Theory of Computing (2007). https://doi.org/10.1145/1250790.1250874

  15. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010). https://doi.org/10.1111/j.1475-3995.2009.00696.x

    Article  MathSciNet  MATH  Google Scholar 

  16. Montanaro, A.: Quantum walk speedup of backtracking algorithms. Theory Comput. 14(15), 1–24 (2018). https://doi.org/10.4086/toc.2018.v014a015

    Article  MathSciNet  MATH  Google Scholar 

  17. Montanaro, A.: Quantum speedup of branch-and-bound algorithms. arXiv:1906.10375 (2019)

  18. Montanaro, A.: Data from Quantum algorithms for CSPs. c9pb. Accessed Jul 2019. https://doi.org/10.5523/bris.19va21gun3c7629f291kmd6w37

  19. Santha, M.: Quantum walk based search algorithms. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_3

    Chapter  Google Scholar 

  20. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: FOCS 2004. IEEE (2004). https://doi.org/10.1109/FOCS.2004.53

  21. van Beek, P.: Backtracking search algorithms. In: Handbook of Constraint Programming. Elsevier (2006). https://doi.org/10.1016/S1574-6526(06)80008-8

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Atos. The implementation was developed in python using Atos’ pyAQASM library. All simulations were performed on the Atos Quantum Learning Machine. We acknowledge support from the French ANR project ANR-18-CE47-0010 (QUDATA), the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 Program (QuantAlgo project), and the French ANR project ANR-18-QUAN-0017 (QuantAlgo Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Remaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martiel, S., Remaud, M. (2020). Practical Implementation of a Quantum Backtracking Algorithm. In: Chatzigeorgiou, A., et al. SOFSEM 2020: Theory and Practice of Computer Science. SOFSEM 2020. Lecture Notes in Computer Science(), vol 12011. Springer, Cham. https://doi.org/10.1007/978-3-030-38919-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38919-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38918-5

  • Online ISBN: 978-3-030-38919-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics