Abstract
In previous work, Montanaro presented a method to obtain quantum speedups for backtracking algorithms, a general meta-algorithm to solve constraint satisfaction problems (CSPs). In this work, we derive a space efficient implementation of this method. Assume that we want to solve a CSP with m constraints on n variables and that the domain in which these variables take their value is of cardinality d. Then, we show that the implementation of Montanaro’s backtracking algorithm can be done by using \(\mathcal {O}(n\log {d})\) data qubits. We detail an implementation of the predicate associated to the CSP with an additional register of \(\mathcal {O}(\log {m})\) qubits. We explicit our implementation for graph coloring and SAT problems, and present simulation results. Finally, we discuss the impact of the usage of static and dynamic variable ordering heuristics in the quantum setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01(04), 507–518 (2003). https://doi.org/10.1142/S0219749903000383
Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007). https://doi.org/10.1137/S0097539705447311
Ambainis, A., Kokainis, M.: Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games. In: Proceedings of the 49th STOC. ACM (2017). https://doi.org/10.1145/3055399.3055444
Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_14
Belovs, A., Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: Time-efficient quantum walks for 3-distinctness. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 105–122. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_10
Campbell, E., Khurana, A., Montanaro, A.: Applying quantum algorithms to constraint satisfaction problems. Quantum 3, 167 (2018). https://doi.org/10.22331/q-2019-07-18-167
Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th STOC. ACM (2003). https://doi.org/10.1145/780542.780552
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.368557
Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37
Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation. Elsevier (2008). https://doi.org/10.1016/S1574-6526(07)03002-7
Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: a survey. In: Handbook of Combinatorial Optimization. Springer (1999) https://doi.org/10.1007/978-1-4757-3023-4_7
Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003). https://doi.org/10.1080/00107151031000110776
Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proceedings of the 39th STOC. Theory of Computing (2007). https://doi.org/10.1145/1250790.1250874
Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010). https://doi.org/10.1111/j.1475-3995.2009.00696.x
Montanaro, A.: Quantum walk speedup of backtracking algorithms. Theory Comput. 14(15), 1–24 (2018). https://doi.org/10.4086/toc.2018.v014a015
Montanaro, A.: Quantum speedup of branch-and-bound algorithms. arXiv:1906.10375 (2019)
Montanaro, A.: Data from Quantum algorithms for CSPs. c9pb. Accessed Jul 2019. https://doi.org/10.5523/bris.19va21gun3c7629f291kmd6w37
Santha, M.: Quantum walk based search algorithms. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_3
Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: FOCS 2004. IEEE (2004). https://doi.org/10.1109/FOCS.2004.53
van Beek, P.: Backtracking search algorithms. In: Handbook of Constraint Programming. Elsevier (2006). https://doi.org/10.1016/S1574-6526(06)80008-8
Acknowledgments
This work was supported by Atos. The implementation was developed in python using Atos’ pyAQASM library. All simulations were performed on the Atos Quantum Learning Machine. We acknowledge support from the French ANR project ANR-18-CE47-0010 (QUDATA), the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 Program (QuantAlgo project), and the French ANR project ANR-18-QUAN-0017 (QuantAlgo Project).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Martiel, S., Remaud, M. (2020). Practical Implementation of a Quantum Backtracking Algorithm. In: Chatzigeorgiou, A., et al. SOFSEM 2020: Theory and Practice of Computer Science. SOFSEM 2020. Lecture Notes in Computer Science(), vol 12011. Springer, Cham. https://doi.org/10.1007/978-3-030-38919-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-38919-2_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38918-5
Online ISBN: 978-3-030-38919-2
eBook Packages: Computer ScienceComputer Science (R0)