Abstract
Model checking on Pushdown Systems (PDSs) has been extensively used to deal with numerous practical problems. However, the existing model checkers for pushdown systems are executed on the central processing unit (CPU), the performance is hampered by the computing power of the CPU. Compared with the CPU, the graphics processing unit (GPU) has more processing cores, which are suitable and efficient for parallel computing. Therefore, it is very attractive to accelerate model checking of PDSs on the GPU. In this paper, we present a new parallel model checker, named ParaMoC, to speed up the performance of model checking problems for pushdown systems (PDSs). Moreover, we focus on how to use Graphics Processing Units (GPUs) to accelerate the reachability verification and the LTL model checking of PDSs. The ParaMoC running on a state-of-the-art GPU can be 100 times faster than the traditional PDS model checker.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
ParaMoC is available at https://sites.google.com/view/ParaMoC.
References
Almasi, G.S., Gottlieb, A.: Highly parallel computing (1988)
Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development and analysis. In: ACM Sigplan Notices, vol. 41, pp. 169–190. ACM (2006)
Bošnački, D., Leue, S., Lafuente, A.L.: Partial-order reduction for general state exploring algorithms. Int. J. Softw. Tools Technol. Transf. 11(1), 39–51 (2009)
Clarke, E.M., Mcmillan, K.L., Campos, S.V.A., Hartonasgarmhausen, V.: Symbolic model checking, pp. 419–427 (1993)
Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_20
Hague, M., Ong, C.-H.L.: Analysing mu-calculus properties of pushdown systems. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 187–192. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16164-3_14
Holzmann, G.J.: The model checker spin. TSE 23(5), 279–295 (1997)
Nvidia: Nvidia CUDA compute unified device architecture (2010). https://developer.nvidia.com/cuda-toolkit/
Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application to interprocedural dataflow analysis. SCP 58, 206–263 (2005)
Schwoon, S.: Model-checking pushdown systems, pp. 73–84 (2002)
Song, F., Touili, T.: Efficient malware detection using model-checking. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_34
Song, F., Touili, T.: LTL model-checking for malware detection. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 416–431. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_29
Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
Acknowledgements
This work is partially supported by Shanghai Science and Technology Committee Rising-Star Program (No. 18QB1402000), National Natural Science Foundation of China (No. 61602178), China HGJ Project under Grant (No. 2017ZX01038102-002), and National Defense Basic Scientific Research Program of China (No. JCKY2016204B503).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wei, H., Ye, X., Shi, J., Huang, Y. (2020). ParaMoC: A Parallel Model Checker for Pushdown Systems. In: Wen, S., Zomaya, A., Yang, L.T. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2019. Lecture Notes in Computer Science(), vol 11945. Springer, Cham. https://doi.org/10.1007/978-3-030-38961-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-38961-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38960-4
Online ISBN: 978-3-030-38961-1
eBook Packages: Computer ScienceComputer Science (R0)