Abstract
Quantification of left ventricular (LV) parameters from cardiac MRI is important to assess cardiac condition and help in the diagnosis of certain pathologies. We present a CNN-based approach for automatic quantification of 11 LV indices: LV and myocardial area, 3 LV dimensions and 6 regional wall thicknesses (RWT). We use an encoder-decoder segmentation architecture and hypothesize that deep feature maps contain important shape information suitable to start an additional network branch for LV index regression. The CNN is simultaneously trained on regression and segmentation losses. We validated our approach on the LVQuan19 training dataset and found that our proposed CNN significantly outperforms a standard encoder regression CNN. The mean absolute error and Pearson correlation coefficient obtained for the different indices are respectively 190 mm\(^2\) (96\(\%\)), 214 mm\(^2\) (0.90\(\%\)), 2.99 mm (95\(\%\)) and 1.82 mm (71\(\%\)) for LV area, myocardial area, LV dimensions and RWT on a three-fold cross validation and 186 mm\(^2\) (97\(\%\)), 222 mm\(^2\) (0.88\(\%\)), 3.03 mm (0.95\(\%\)) and 1.67 mm (73\(\%\)) on a five-fold cross validation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li and Xue, LV Full Quantification Challenge. https://lvquan18.github.io/
Xue, W., et al.: Full left ventricle quantification via deep multitask relationships learning. Med. Image Anal. 43, 54–65 (2018)
Li, J., Hu, Z.: Left ventricle full quantification using deep layer aggregation based multitask relationship learning. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 381–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_41
Liu, L., Ma, J., Wang, J., Xiao, J.: Automated full quantification of left ventricle with deep neural networks. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 412–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_44
Yang, G., et al.: Left ventricle full quantification via hierarchical quantification network. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 429–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_46
Debus, A., Ferrante, E.: Left ventricle quantification through spatio-temporal CNNs. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 466–475. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_50
Jang, Y., Kim, S., Shim, H., Chang, H.-J.: Full quantification of left ventricle using deep multitask network with combination of 2D and 3D convolution on 2D+t Cine MRI. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 476–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_51
Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40
Guo, F., Ng, M., Wright, G.: Cardiac MRI left ventricle segmentation and quantification: a framework combining U-Net and continuous max-flow. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 450–458. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_48
Xu, H., Schneider, J.E., Grau, V.: Calculation of anatomical and functional metrics using deep learning in cardiac MRI: comparison between direct and segmentation-based estimation. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 402–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_43
Yan, W., Wang, Y., Chen, S., van der Geest, R.J., Tao, Q.: ESU-P-net: cascading network for full quantification of left ventricle from cine MRI. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 421–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_45
Liu, J., Li, X., Ren, H., Li, Q.: Multi-estimator full left ventricle quantification through ensemble learning. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 459–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_49
Cao, L., et al.: Multi-task neural networks for joint hippocampus segmentation and clinical score regression. Multimed. Tools Appl. 77, 29669–29686 (2018)
Cerqueir, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic images of the heart. J. Am. Soc. Echocardiogr. 15(5), 463–476 (2002)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML 2015 (2015)
Maas A.L., et al.: Rectifier nonlinearities improve neural network acoustic models. In: ICML 2013 (2013)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2014)
He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision 2015, pp. 1026–1034 (2015)
Zotti, C., et al.: Convolutional neural network with shape prior applied to cardiac MRI segmentation. IEEE J. Biomed. Health Inform. 23(3), 1119–1128 (2019)
\(\varOmega \)-net: fully automatic: multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2019)
Acknowledgement
Sofie Tilborghs is supported by a Ph.D fellowship of the Research Foundation - Flanders (FWO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tilborghs, S., Maes, F. (2020). Left Ventricular Parameter Regression from Deep Feature Maps of a Jointly Trained Segmentation CNN. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-39074-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39073-0
Online ISBN: 978-3-030-39074-7
eBook Packages: Computer ScienceComputer Science (R0)