Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12009))

Abstract

Quantification of left ventricular (LV) parameters from cardiac MRI is important to assess cardiac condition and help in the diagnosis of certain pathologies. We present a CNN-based approach for automatic quantification of 11 LV indices: LV and myocardial area, 3 LV dimensions and 6 regional wall thicknesses (RWT). We use an encoder-decoder segmentation architecture and hypothesize that deep feature maps contain important shape information suitable to start an additional network branch for LV index regression. The CNN is simultaneously trained on regression and segmentation losses. We validated our approach on the LVQuan19 training dataset and found that our proposed CNN significantly outperforms a standard encoder regression CNN. The mean absolute error and Pearson correlation coefficient obtained for the different indices are respectively 190 mm\(^2\) (96\(\%\)), 214 mm\(^2\) (0.90\(\%\)), 2.99 mm (95\(\%\)) and 1.82 mm (71\(\%\)) for LV area, myocardial area, LV dimensions and RWT on a three-fold cross validation and 186 mm\(^2\) (97\(\%\)), 222 mm\(^2\) (0.88\(\%\)), 3.03 mm (0.95\(\%\)) and 1.67 mm (73\(\%\)) on a five-fold cross validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li and Xue, LV Full Quantification Challenge. https://lvquan18.github.io/

  2. Xue, W., et al.: Full left ventricle quantification via deep multitask relationships learning. Med. Image Anal. 43, 54–65 (2018)

    Article  Google Scholar 

  3. Li, J., Hu, Z.: Left ventricle full quantification using deep layer aggregation based multitask relationship learning. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 381–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_41

    Chapter  Google Scholar 

  4. Liu, L., Ma, J., Wang, J., Xiao, J.: Automated full quantification of left ventricle with deep neural networks. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 412–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_44

    Chapter  Google Scholar 

  5. Yang, G., et al.: Left ventricle full quantification via hierarchical quantification network. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 429–438. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_46

    Chapter  Google Scholar 

  6. Debus, A., Ferrante, E.: Left ventricle quantification through spatio-temporal CNNs. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 466–475. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_50

    Chapter  Google Scholar 

  7. Jang, Y., Kim, S., Shim, H., Chang, H.-J.: Full quantification of left ventricle using deep multitask network with combination of 2D and 3D convolution on 2D+t Cine MRI. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 476–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_51

    Chapter  Google Scholar 

  8. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  9. Guo, F., Ng, M., Wright, G.: Cardiac MRI left ventricle segmentation and quantification: a framework combining U-Net and continuous max-flow. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 450–458. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_48

    Chapter  Google Scholar 

  10. Xu, H., Schneider, J.E., Grau, V.: Calculation of anatomical and functional metrics using deep learning in cardiac MRI: comparison between direct and segmentation-based estimation. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 402–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_43

    Chapter  Google Scholar 

  11. Yan, W., Wang, Y., Chen, S., van der Geest, R.J., Tao, Q.: ESU-P-net: cascading network for full quantification of left ventricle from cine MRI. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 421–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_45

    Chapter  Google Scholar 

  12. Liu, J., Li, X., Ren, H., Li, Q.: Multi-estimator full left ventricle quantification through ensemble learning. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 459–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_49

    Chapter  Google Scholar 

  13. Cao, L., et al.: Multi-task neural networks for joint hippocampus segmentation and clinical score regression. Multimed. Tools Appl. 77, 29669–29686 (2018)

    Article  Google Scholar 

  14. Cerqueir, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic images of the heart. J. Am. Soc. Echocardiogr. 15(5), 463–476 (2002)

    Article  Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML 2015 (2015)

    Google Scholar 

  16. Maas A.L., et al.: Rectifier nonlinearities improve neural network acoustic models. In: ICML 2013 (2013)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  19. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision 2015, pp. 1026–1034 (2015)

    Google Scholar 

  20. Zotti, C., et al.: Convolutional neural network with shape prior applied to cardiac MRI segmentation. IEEE J. Biomed. Health Inform. 23(3), 1119–1128 (2019)

    Article  Google Scholar 

  21. \(\varOmega \)-net: fully automatic: multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2019)

    Google Scholar 

Download references

Acknowledgement

Sofie Tilborghs is supported by a Ph.D fellowship of the Research Foundation - Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Tilborghs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tilborghs, S., Maes, F. (2020). Left Ventricular Parameter Regression from Deep Feature Maps of a Jointly Trained Segmentation CNN. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics