Skip to main content

Abstract

We propose a 4D convolutional neural network (CNN) for the segmentation of retrospective ECG-gated cardiac CT, a series of single-channel volumetric data over time. While only a small subset of volumes in the temporal sequence is annotated, we define a sparse loss function on available labels to allow the network to leverage unlabeled images during training and generate a fully segmented sequence. We investigate the accuracy of the proposed 4D network to predict temporally consistent segmentations and compare with traditional 3D segmentation approaches. We demonstrate the feasibility of the 4D CNN and establish its performance on cardiac 4D CCTA (video: https://drive.google.com/uc?id=1n-GJX5nviVs8R7tque2zy2uHFcN_Ogn1.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.tensorflow.org.

  2. 2.

    https://pytorch.org.

  3. 3.

    R corresponds to the peak of the QRS complex in the ECG wave.

  4. 4.

    https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk.

References

  1. American College of Radiology: Touch-AI Directory (2019). https://www.acrdsi.org/DSI-Services/TOUCH-AI

  2. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv:1802.02611 (2018)

  3. Clark, D., Badea, C.: Convolutional regularization methods for 4D, x-ray CT reconstruction. In: Medical Imaging: PMI, vol. 10948 (2019)

    Google Scholar 

  4. Curtis, J.P., et al.: The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. ACC 42(4), 736–742 (2003)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  6. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV) (2016)

    Google Scholar 

  7. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28. https://arxiv.org/abs/1810.11654

    Chapter  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  10. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Deep end2end voxel2voxel prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 17–24 (2016)

    Google Scholar 

  11. Valipour, S., Siam, M., Jagersand, M., Ray, N.: Recurrent fully convolutional networks for video segmentation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 29–36. IEEE (2017)

    Google Scholar 

  12. Wang, T.-C., Zhu, J.-Y., Hiroaki, E., Chandraker, M., Efros, A.A., Ramamoorthi, R.: A 4D light-field dataset and CNN architectures for material recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 121–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_8

    Chapter  Google Scholar 

  13. World Health Organization: Cardiovascular Diseases (CVDs) (May 2017). https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  14. Wu, Y., He, K.: Group normalization. In: European Conference on Computer Vision (ECCV) (2018)

    Chapter  Google Scholar 

  15. Yang, D., Huang, Q., Axel, L., Metaxas, D.: Multi-component deformable models coupled with 2D–3D U-Net for automated probabilistic segmentation of cardiac walls and blood. In: ISBI, pp. 479–483 (2018)

    Google Scholar 

  16. Zhang, D., et al.: Segmentation of left ventricle myocardium in porcine cardiac cine MR images using a hybrid of fully convolutional neural networks and convolutional LSTM. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105740A. International Society for Optics and Photonics (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Myronenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myronenko, A. et al. (2020). 4D CNN for Semantic Segmentation of Cardiac Volumetric Sequences. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics