Skip to main content

A Grossone-Based Numerical Model for Computations with Infinity: A Case Study in an Italian High School

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11973))

Abstract

The knowledge and understanding of abstract concepts systematically occur in the studies of mathematics. The epistemological approach of these concepts gradually becomes of higher importance as the level of abstraction and the risk of developing a “primitive concept” which is different from the knowledge of the topic itself increase. A typical case relates to the concepts of infinity and infinitesimal. The basic idea is to overturn the normal “concept-model” approach: no longer a concept which has to be studied and modeled in a further moment but rather a model that can be manipulated (from the calculation point of view) and that has to be associated to a concept that is compatible with the calculus properties of the selected model. In this paper the authors want to prove the usefulness of this new approach in the study of infinite quantities and of the infinitesimal calculus. To do this, they expose results of an experiment being a test proposed to students of a high school. The aim of the test is to demonstrate that this new solution could be useful in order to enforce ideas and acknowledgment about infinitesimal calculus. In order to do that, the authors propose a test to their students a first time without giving any theoretical information but only using an arithmetic/algebraic model. In a second moment, after some lectures, the students repeat the test showing that new better results come out. The reason is that after lessons, students could join new basic ideas or primitive concepts to their calculus abilities. By such doing they do not use a traditional “concept–model” but a new “model–concept” solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniotti, L., Caldarola, F., d’Atri, G., Pellegrini, M.: New approaches to basic calculus: an experimentation via numerical computation. In: Sergeyev, Ya.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 329–342. Springer, Heidelberg (2019)

    Google Scholar 

  2. Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterranean J. Math. (to appear)

    Google Scholar 

  3. Asubel, D.: Educazione e processi cognitivi. Franco Angeli (1978)

    Google Scholar 

  4. Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P.: The role of computer simulations in learning analytic mechanics towards chaos theory: a course experimentation. Int. J. Math. Educ. Sci. Technol. 50(1), 100–120 (2019)

    Article  Google Scholar 

  5. Bonaiuti, G., Calvani, A., Ranieri, M.: Fondamenti di didattica. Teoria e prassi dei dispositivi formativi. Carrocci, Roma (2007)

    Google Scholar 

  6. Caldarola, F.: The exact measures of the Sierpiński \(d\)-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018). https://doi.org/10.1016/j.cnsns.2018.02.026

    Article  MathSciNet  Google Scholar 

  7. Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). https://doi.org/10.1016/j.amc.2017.06.024

    Article  MATH  Google Scholar 

  8. Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M.: Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 358–372. Springer, Heidelberg (2019)

    Google Scholar 

  9. Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the Z-transform through infinite computation. Commun. Nonlinear Sci. Numer. Simul. 82, 105019 (2020). https://doi.org/10.1016/j.cnsns.2019.105019

    Article  Google Scholar 

  10. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  11. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Ely, R.: Nonstandard student conceptions about infinitesimals. J. Res. Math. Educ. 41(2), 117–146 (2010)

    Google Scholar 

  13. Faggiano, E.: “Integrare" le tecnologie nella didattica della Matematica: un compito complesso. Bricks 2(4), 98–102 (2012)

    Google Scholar 

  14. Gastaldi, M.: Didattica generale. Mondadori, Milano (2010)

    Google Scholar 

  15. Gennari, M.: Didattica generale. Bompiani, Milano (2006)

    Google Scholar 

  16. Iannone P., Rizza D., Thoma A.: Investigating secondary school students’ epistemologies through a class activity concerning infinity. In: Bergqvist E., et al. (eds.) Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education, Umeå, Sweden, vol. 3, pp. 131–138. PME (2018)

    Google Scholar 

  17. La Neve, C.: Manuale di didattica. Il sapere sull’insegnamento. La Scuola, Brescia (2011)

    Google Scholar 

  18. Palumbo, C., Zich, R.: Matematica ed informatica: costruire le basi di una nuova didattica 2(4), 10–19 (2012)

    Google Scholar 

  19. Rizza, D.: Primi Passi nell’Aritmetica dell’Infinito. Un nuovo modo di contare e misurare (2019, Preprint)

    Google Scholar 

  20. Rizza, D.: A study of mathematical determination through Bertrand’s Paradox. Philosophia Mathematica 26(3), 375–395 (2018)

    Article  MathSciNet  Google Scholar 

  21. Scimone, A., Spagnolo, F.: Il caso emblematico dell’inverso del teorema di Pitagora nella storia della trasposizione didattica attraverso i manuali. La matematica e la sua didattica 2, 217–227 (2005)

    Google Scholar 

  22. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19, 567–596 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Sergeyev, Y.D.: Arithmetic of infinity. 2nd electronic ed. 2013. Edizioni Orizzonti Meridionali, Cosenza (2003)

    Google Scholar 

  24. Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A: Theory Methods Appl. 1(12), 1688–1707 (2009)

    Article  MathSciNet  Google Scholar 

  25. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Matematica, Società Cultura: Rivista dell’Unione Matematica Italiana 8(1), 111–147 (2015)

    Google Scholar 

  26. Sergeyev, Y.D.: Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  27. Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the infinity computer. Int. J. Unconv. Comput. 12, 3–23 (2016)

    Google Scholar 

  28. Tall, D.: A child thinking about infinity. J. Math. Behav. 20, 7–19 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Fabio Caldarola, University of Calabria, for the supervision of the project and the Headmistress of Liceo Scientifico “Filolao”, Antonella Romeo, for the economic support. The authors thank the anonymous reviewers for their useful comments that have improved the presentation. Special thanks go to Irene Dattolo for her valuable support provided for the translation of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ingarozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ingarozza, F., Adamo, M.T., Martino, M., Piscitelli, A. (2020). A Grossone-Based Numerical Model for Computations with Infinity: A Case Study in an Italian High School. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics