Abstract
In this paper we propose an outlier detection algorithm for temperature sensor data from jet engine tests. Effective identification of outliers would enable engine problems to be examined and resolved efficiently. Outlier detection in this data is challenging because a human controller determines the speed of the engine during each manoeuvre. This introduces variability which can mask abnormal behaviour in the engine response. We therefore suggest modelling the dependency between speed and temperature in the process of identifying abnormalities. The engine temperature has a delayed response with respect to the engine speed, which we will model using robust functional regression. We then apply functional depth with respect to the residuals to rank the samples and identify the outliers. The effectiveness of the outlier detection algorithm is shown in a simulation study. The algorithm is also applied to real engine data, and identifies samples that warrant further investigation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agulló, J., Croux, C., Van Aelst, S.: The multivariate least-trimmed squares estimator. J. Multivar. Anal. 99(3), 311–338 (2008)
Arribas-Gil, A., Romo, J.: Shape outlier detection and visualization for functional data: the outliergram. Biostatistics 15(4), 603–619 (2014)
Bali, J.L., Boente, G., Tyler, D.E., Wang, J.L.: Robust functional principal components: a projection-pursuit approach. Ann. Stat. 39(6), 2852–2882 (2011)
Boente, G., Salibian-Barrera, M.: S-estimators for functional principal component analysis. J. Am. Stat. Assoc. 110(511), 1100–1111 (2015)
Chiou, J.M., Yang, Y.F., Chen, Y.T.: Multivariate functional linear regression and prediction. J. Multivar. Anal. 146, 301–312 (2016). Special Issue on Statistical Models and Methods for High or Infinite Dimensional Spaces
Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Comput. Stat. 22(3), 481–496 (2007)
Dai, W., Genton, M.G.: Multivariate functional data visualization and outlier detection. J. Comput. Graph. Stat. 27(4), 923–934 (2018)
Febrero-Bande, M., Galeano, P., Gonzãlez-Manteiga, W.: Outlier detection in functional data by depth measures, with application to identify abnormal NOX levels. Environmetrics 19, 331–345 (2008)
Hayton, P.M., Schölkopf, B., Tarassenko, L., Anuzis, P.: Support vector novelty detection applied to jet engine vibration spectra, pp. 946–952 (2001)
Hubert, M., Rousseeuw, P.J., Segaert, P.: Multivariate functional outlier detection. Stat. Methods Appl. 24(2), 177–202 (2015)
Ivanescu, A.E., Staicu, A.M., Scheipl, F., Greven, S.: Penalized function-on-function regression. Comput. Stat. 30(2), 539–568 (2015)
Matsui, H.: Quadratic regression for functional response models. arXiv e-prints (2017)
Morris, J.S.: Functional regression. Annual Rev. Stat. Appl. 2, 321–359 (2015)
Nairac, A., Townsend, N.W., Carr, R., King, S., Cowley, P., Tarassenko, L.: A system for the analysis of jet engine vibration data. Integr. Comput. Aided Eng. 6, 53–66 (1999)
Nieto-Reyes, A., Battey, H.: A topologically valid definition of depth for functional data. Stat. Sci. 31(1), 61–79 (2016)
Ramsay, J.O., Dalzell, C.J.: Some tools for functional data analysis. J. Roy. Stat. Soc. Ser. B (Methodol.) 53(3), 539–572 (1991)
Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer Series in Statistics. Springer, New York (2005). https://doi.org/10.1007/b98888
Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)
Rousseeuw, P.J., Raymaekers, J., Hubert, M.: A measure of directional outlyingness with applications to image data and video. J. Comput. Graph. Stat. 27(2), 345–359 (2018)
Scheipl, F., Staicu, A.M., Greven, S.: Functional additive mixed models. J. Comput. Graph. Stat. 24(2), 477–501 (2015)
Shang, H.L.: A survey of functional principal component analysis. AStA Adv. Stat. Anal. 98(2), 121–142 (2014)
Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20(2), 316–334 (2011)
Yao, F., Müller, H.G., Wang, J.L., et al.: Functional linear regression analysis for longitudinal data. Ann. Stat. 33(6), 2873–2903 (2005)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hullait, H., Leslie, D.S., Pavlidis, N.G., King, S. (2020). Robust Functional Regression for Outlier Detection. In: Lemaire, V., Malinowski, S., Bagnall, A., Bondu, A., Guyet, T., Tavenard, R. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2019. Lecture Notes in Computer Science(), vol 11986. Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-39098-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39097-6
Online ISBN: 978-3-030-39098-3
eBook Packages: Computer ScienceComputer Science (R0)