Skip to main content

Robust Functional Regression for Outlier Detection

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11986))

  • 791 Accesses

Abstract

In this paper we propose an outlier detection algorithm for temperature sensor data from jet engine tests. Effective identification of outliers would enable engine problems to be examined and resolved efficiently. Outlier detection in this data is challenging because a human controller determines the speed of the engine during each manoeuvre. This introduces variability which can mask abnormal behaviour in the engine response. We therefore suggest modelling the dependency between speed and temperature in the process of identifying abnormalities. The engine temperature has a delayed response with respect to the engine speed, which we will model using robust functional regression. We then apply functional depth with respect to the residuals to rank the samples and identify the outliers. The effectiveness of the outlier detection algorithm is shown in a simulation study. The algorithm is also applied to real engine data, and identifies samples that warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agulló, J., Croux, C., Van Aelst, S.: The multivariate least-trimmed squares estimator. J. Multivar. Anal. 99(3), 311–338 (2008)

    Article  MathSciNet  Google Scholar 

  2. Arribas-Gil, A., Romo, J.: Shape outlier detection and visualization for functional data: the outliergram. Biostatistics 15(4), 603–619 (2014)

    Article  Google Scholar 

  3. Bali, J.L., Boente, G., Tyler, D.E., Wang, J.L.: Robust functional principal components: a projection-pursuit approach. Ann. Stat. 39(6), 2852–2882 (2011)

    Article  MathSciNet  Google Scholar 

  4. Boente, G., Salibian-Barrera, M.: S-estimators for functional principal component analysis. J. Am. Stat. Assoc. 110(511), 1100–1111 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chiou, J.M., Yang, Y.F., Chen, Y.T.: Multivariate functional linear regression and prediction. J. Multivar. Anal. 146, 301–312 (2016). Special Issue on Statistical Models and Methods for High or Infinite Dimensional Spaces

    Article  MathSciNet  Google Scholar 

  6. Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Comput. Stat. 22(3), 481–496 (2007)

    Article  MathSciNet  Google Scholar 

  7. Dai, W., Genton, M.G.: Multivariate functional data visualization and outlier detection. J. Comput. Graph. Stat. 27(4), 923–934 (2018)

    Article  MathSciNet  Google Scholar 

  8. Febrero-Bande, M., Galeano, P., Gonzãlez-Manteiga, W.: Outlier detection in functional data by depth measures, with application to identify abnormal NOX levels. Environmetrics 19, 331–345 (2008)

    Article  MathSciNet  Google Scholar 

  9. Hayton, P.M., Schölkopf, B., Tarassenko, L., Anuzis, P.: Support vector novelty detection applied to jet engine vibration spectra, pp. 946–952 (2001)

    Google Scholar 

  10. Hubert, M., Rousseeuw, P.J., Segaert, P.: Multivariate functional outlier detection. Stat. Methods Appl. 24(2), 177–202 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ivanescu, A.E., Staicu, A.M., Scheipl, F., Greven, S.: Penalized function-on-function regression. Comput. Stat. 30(2), 539–568 (2015)

    Article  MathSciNet  Google Scholar 

  12. Matsui, H.: Quadratic regression for functional response models. arXiv e-prints (2017)

    Google Scholar 

  13. Morris, J.S.: Functional regression. Annual Rev. Stat. Appl. 2, 321–359 (2015)

    Article  Google Scholar 

  14. Nairac, A., Townsend, N.W., Carr, R., King, S., Cowley, P., Tarassenko, L.: A system for the analysis of jet engine vibration data. Integr. Comput. Aided Eng. 6, 53–66 (1999)

    Article  Google Scholar 

  15. Nieto-Reyes, A., Battey, H.: A topologically valid definition of depth for functional data. Stat. Sci. 31(1), 61–79 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ramsay, J.O., Dalzell, C.J.: Some tools for functional data analysis. J. Roy. Stat. Soc. Ser. B (Methodol.) 53(3), 539–572 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer Series in Statistics. Springer, New York (2005). https://doi.org/10.1007/b98888

    Book  MATH  Google Scholar 

  18. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)

    Article  Google Scholar 

  19. Rousseeuw, P.J., Raymaekers, J., Hubert, M.: A measure of directional outlyingness with applications to image data and video. J. Comput. Graph. Stat. 27(2), 345–359 (2018)

    Article  MathSciNet  Google Scholar 

  20. Scheipl, F., Staicu, A.M., Greven, S.: Functional additive mixed models. J. Comput. Graph. Stat. 24(2), 477–501 (2015)

    Article  MathSciNet  Google Scholar 

  21. Shang, H.L.: A survey of functional principal component analysis. AStA Adv. Stat. Anal. 98(2), 121–142 (2014)

    Article  MathSciNet  Google Scholar 

  22. Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20(2), 316–334 (2011)

    Article  MathSciNet  Google Scholar 

  23. Yao, F., Müller, H.G., Wang, J.L., et al.: Functional linear regression analysis for longitudinal data. Ann. Stat. 33(6), 2873–2903 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harjit Hullait , David S. Leslie , Nicos G. Pavlidis or Steve King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hullait, H., Leslie, D.S., Pavlidis, N.G., King, S. (2020). Robust Functional Regression for Outlier Detection. In: Lemaire, V., Malinowski, S., Bagnall, A., Bondu, A., Guyet, T., Tavenard, R. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2019. Lecture Notes in Computer Science(), vol 11986. Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39098-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39097-6

  • Online ISBN: 978-3-030-39098-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics