Skip to main content

Proactive Fiber Break Detection Based on Quaternion Time Series and Automatic Variable Selection from Relational Data

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11986))

  • 833 Accesses

Abstract

We address the problem of event classification for proactive fiber break detection in high-speed optical communication systems. The proposed approach is based on monitoring the State of Polarization (SOP) via digital signal processing in a coherent receiver. We describe in details the design of a classifier providing interpretable decision rules and enabling low-complexity real-time detection embedded in network elements. The proposed method operates on SOP time series, which define trajectories on the 3D sphere; SOP time series are low-pass filtered (to reduce measurement noise), pre-rotated (to provide invariance to the starting point of trajectories) and converted to quaternion domain. Then quaternion sequences are recoded to relational data for automatic variable construction and selection. We show that a naïve Bayes classifier using a limited subset of variables can achieve an event classification accuracy of more than 99% for the tested conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Invariance to the starting point is quite different from invariance to time scale that could be addressed using dynamic time warping (DTW). Here DTW would not solve the problem of invariance to the starting point.

  2. 2.

    Up to now this is an adhoc decision discussed in the last section of this paper.

References

  1. Adewuyi, A.P., Wu, Z., Serker, N.K.: Assessment of vibration-based damage identification methods using displacement and distributed strain measurements. Struct. Health Monit. 8(6), 443–461 (2009)

    Article  Google Scholar 

  2. Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Trans. Knowl. Data Eng. 27(9), 2522–2535 (2015)

    Article  Google Scholar 

  3. Bagnall, A., Davis, L., Hills, J., Lines, J.: Transformation based ensembles for time series classification. In: Proceedings of the 12th SDM, April 2012

    Google Scholar 

  4. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  5. Boitier, F., et al.: Proactive fiber damage detection in real-time coherent receiver. In: Proceedings of the ECOC (2017)

    Google Scholar 

  6. Boitier, F., et al.: Seamless optical path restoration with just-in-time resource allocation leveraging machine learning. In: Proceeding of the ECOC, Demo Session (2018)

    Google Scholar 

  7. Boullé, M.: A grouping method for categorical attributes having very large number of values. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 228–242. Springer, Heidelberg (2005). https://doi.org/10.1007/11510888_23

    Chapter  Google Scholar 

  8. Boullé, M.: MODL: a Bayes optimal discretization method for continuous attributes. Mach. Learn. 65(1), 131–165 (2006)

    Article  Google Scholar 

  9. Boullé, M.: Compression-based averaging of selective naive Bayes classifiers. J. Mach. Learn. Res. 8, 1659–1685 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Boullé, M.: Tagging fireworkers activities from body sensors under distribution drift. In: Proceedings of Federated Conference on Computer Science and Information System, pp. 389–396 (2015)

    Google Scholar 

  11. Boullé, M.: Khiops: outil d’apprentissage supervisé automatique pour la fouille de grandes bases de données multi-tables. In: Extraction et Gestion des Connaissances, pp. 505–510 (2016). http://www.khiops.com

  12. Boullé, M.: Predicting dangerous seismic events in coal mines under distribution drift. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of Federated Conference on Computer Science and Information System, pp. 221–224 (2016)

    Google Scholar 

  13. Boullé, M., Charnay, C., Lachiche, N.: A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data. Mach. Learn. 108, 229–266 (2018)

    Article  MathSciNet  Google Scholar 

  14. Casteljau, P.D.: Les quaternions. Dunod, Paris (1987)

    MATH  Google Scholar 

  15. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/

  16. Dutisseuil, E., et al.: 34 Gb/s PDM-QPSK coherent receiver using SiGe ADCs and a single FPGA for digital signal processing. In: Proceedings of the OFC, p. OM3H.7 (2012)

    Google Scholar 

  17. Džeroski, S.: Relational data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 887–911. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_46

    Chapter  Google Scholar 

  18. Dzeroski, S., Lavrac, N.: Inductive Logic Programming: Techniques and Applications. Prentice Hall, New York (1994)

    MATH  Google Scholar 

  19. Fawcett, T.: ROC graphs: notes and practical considerations for researchers. Technical Report HPL-2003-4, HP Laboratories (2004)

    Google Scholar 

  20. Gay, D., Guigourés, R., Boullé, M., Clérot, F.: Feature extraction over multiple representations for time series classification. In: International Workshop NFMCP held at ECML/PKDD, pp. 18–34 (2013)

    Chapter  Google Scholar 

  21. Hamilton, W.R.: On a new species of imaginary quantities connected with a theory of quaternions. Proc. R. Ir. Acad. 2, 424–434 (1843)

    Google Scholar 

  22. Hanson, A.J.: Visualizing Quaternions. Morgan Kaufmann Publishers, Burlington (2006)

    Google Scholar 

  23. Hauske, F.N., Kuschnerov, M., Spinnler, B., Lankl, B.: Optical performance monitoring in digital coherent receivers. J. Lightwave Technol. 27(16), 3623–3631 (2009)

    Article  Google Scholar 

  24. Hayford-Acquah, T., Asante, B.: Causes of fiber cut and the recommendation to solve the problem. IOSR J. Electron. Commun. Eng. 12, 46–64 (2017)

    Article  Google Scholar 

  25. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kikuchi, K.: Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34(1), 157–179 (2016)

    Article  Google Scholar 

  27. Krogel, M.-A., Rawles, S., Železný, F., Flach, P.A., Lavrač, N., Wrobel, S.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39917-9_14

    Chapter  Google Scholar 

  28. Krogel, M.-A., Wrobel, S.: Transformation-based learning using multirelational aggregation. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 142–155. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44797-0_12

    Chapter  Google Scholar 

  29. Lachiche, N.: Propositionalization, pp. 812–817. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8

    Book  Google Scholar 

  30. Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI 1992), pp. 223–228 (1992)

    Google Scholar 

  31. Lavrač, N., Železný, F., Flach, P.A.: RSD: relational subgroup discovery through first-order feature construction. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 149–165. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36468-4_10

    Chapter  Google Scholar 

  32. Layec, P., Dupas, A., Verchère, D., Sparks, K., Bigo, S.: Will metro networks be the playground for (true) elastic optical networks? J. Lightwave Technol. 35(6), 1260–1266 (2017)

    Article  Google Scholar 

  33. Lemaire, V., Salperwyck, C., Bondu, A.: A survey on supervised classification on data streams. In: Zimányi, E., Kutsche, R.-D. (eds.) eBISS 2014. LNBIP, vol. 205, pp. 88–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17551-5_4

    Chapter  Google Scholar 

  34. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2015)

    Article  MathSciNet  Google Scholar 

  35. Liu, X., Jin, B., Bai, Q., Wang, D., Wang, Y.: Distributed fiber-optic sensors for vibration detection. Sensors 16, 1164 (2016)

    Article  Google Scholar 

  36. Nokia white paper: Advances in optical layer restoration (2017). https://www.nokia.com/blog/optical-layer-restoration-improving-efficiency/

  37. Pesic, J., Le Rouzic, E., Brochier, N., Dupont, L.: Proactive restoration of optical links based on the classification of events. In: Proceedings of the ONDM, pp. 1–6 (2011)

    Google Scholar 

  38. Pesic, J., Meuric, J., Le Rouzic, E., Dupont, L., Morvan, M.: Proactive failure detection for WDM carrying IP. In: Proceedings of IEEE INFOCOM, pp. 2971–2975 (2012)

    Google Scholar 

  39. Pesic, J.: Study of the mechanisms associated with the preventive network restoration in fiber optic core networks. Ph.D. thesis, Université de Bretagne-Sud (2012)

    Google Scholar 

  40. Project SENDATE-Tandem: Secure networking for a data center cloud in Europe - tailored network for data centers in the metro. https://www.celticnext.eu/project-sendate-tandem/

  41. Rodríguez, J.J., Alonso, C.J., Boström, H.: Learning first order logic time series classifiers: rules and boosting. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 299–308. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_29

    Chapter  Google Scholar 

  42. Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 637–646 (2017)

    Google Scholar 

  43. Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)

    Article  Google Scholar 

  44. Simsarian, J.E., Winzer, P.J.: Shake before break: per-span fiber sensing with in-line polarization monitoring. In: Proceedings of OFC, p. M2E.6 (2017)

    Google Scholar 

  45. Time-series classification challenge: Workshop advanced analytics and learning on temporal data at ECML (2016). https://aaltd16.irisa.fr/challenge/

  46. Warren Liao, T.: Clustering of time series data - a survey. Pattern Recognit. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Lemaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lemaire, V., Boitier, F., Pesic, J., Bondu, A., Ragot, S., Clérot, F. (2020). Proactive Fiber Break Detection Based on Quaternion Time Series and Automatic Variable Selection from Relational Data. In: Lemaire, V., Malinowski, S., Bagnall, A., Bondu, A., Guyet, T., Tavenard, R. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2019. Lecture Notes in Computer Science(), vol 11986. Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39098-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39097-6

  • Online ISBN: 978-3-030-39098-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics