Skip to main content

A Fully Automated Periodicity Detection in Time Series

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11986))

Abstract

This paper presents a method to autonomously find periodicities in a signal. It is based on the same idea of using Fourier Transform and autocorrelation function presented in [12]. While showing interesting results this method does not perform well on noisy signals or signals with multiple periodicities. Thus, our method adds several new extra steps (hints clustering, filtering and detrending) to fix these issues. Experimental results show that the proposed method outperforms state of the art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boston Tides (2018). http://tidesandcurrents.noaa.gov/. Accessed 16 Aug 2018

  2. Gooijer, J.G.D., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006). Twenty five years of forecasting

    Article  Google Scholar 

  3. Great lakes (2018). https://www.glerl.noaa.gov/data/dashboard/data/. Accessed 10 Aug 2018

  4. Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J.: Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond. Int. J. Forecast. 32(3), 896–913 (2016)

    Article  Google Scholar 

  5. Keogh, E.J., Pazzani, M.J.: Pseudo periodic synthetic time series data set. https://archive.ics.uci.edu/ml/datasets/Pseudo+Periodic+Synthetic+Time+Series. Accessed 15 Aug 2018

  6. Koopman, S.J., Ooms, M.: Forecasting daily time series using periodic unobserved components time series models. Comput. Stat. Data Anal. 51(2), 885–903 (2006)

    Article  MathSciNet  Google Scholar 

  7. Li, Z., Ding, B., Rol, J.H., Nye, K.P.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1099–1108. ACM (2010)

    Google Scholar 

  8. Li, Z., Wang, J., Han, J.: Mining event periodicity from incomplete observations. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 444–452. ACM, New York (2012). https://doi.org/10.1145/2339530.2339604

  9. Parthasarathy, S., Mehta, S., Srinivasan, S.: Robust periodicity detection algorithms. In: Proceedings of the 2006 ACM CIKM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, November, pp. 874–875 (2006)

    Google Scholar 

  10. Quinn, F.H., Sellinger, C.E.: Lake Michigan record levels of 1838, a present perspective. J. Great Lakes Res. 16(1), 133–138 (1990)

    Article  Google Scholar 

  11. Saad, E.W., Prokhorov, D.V., Wunsch, D.C.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Trans. Neural Netw. 9(6), 1456–1470 (1998)

    Article  Google Scholar 

  12. Vlachos, M., Yu, P.S., Castelli, V.: On periodicity detection and structural periodic similarity. In: Kargupta, H., Srivastava, J., Kamath, C., Goodman, A. (eds.) Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, Newport Beach, CA, USA, 21–23 April 2005, pp. 449–460. SIAM (2005)

    Google Scholar 

  13. Yuan, Q., Shang, J., Cao, X., Zhang, C., Geng, X., Han, J.: Detecting multiple periods and periodic patterns in event time sequences. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 617–626, ACM, New York (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Puech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puech, T., Boussard, M., D’Amato, A., Millerand, G. (2020). A Fully Automated Periodicity Detection in Time Series. In: Lemaire, V., Malinowski, S., Bagnall, A., Bondu, A., Guyet, T., Tavenard, R. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2019. Lecture Notes in Computer Science(), vol 11986. Springer, Cham. https://doi.org/10.1007/978-3-030-39098-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39098-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39097-6

  • Online ISBN: 978-3-030-39098-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics