Skip to main content

Determining Number of Generalized and Double Generalized Petersen Graph

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Included in the following conference series:

Abstract

The determining number of a graph \(G = (V,E)\) is the minimum cardinality of a set \(S\subseteq V\) such that pointwise stabilizer of S under the action of Aut(G) is trivial. In this paper, we determine the determining number of generalized Petersen graphs and double generalized Petersen graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alspach, B.R.: The classification of Hamiltonian generalized Petersen graphs. J. Comb. Theory, Ser. B 34(3), 293–312 (1983)

    Article  MathSciNet  Google Scholar 

  2. Boutin, D.L.: Identifying graph automorphisms using determining sets. Electron. J. Comb. 13(1), 78 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Boutin, D.L.: The determining number of a cartesian product. J. Graph Theory 61(2), 77–87 (2009)

    Article  MathSciNet  Google Scholar 

  4. Caceres, J., Garijo, D., Gonzalez, A., Marquez, A., Puertas, M.L.: The determining number of Kneser graphs. Discrete Math. Theor. Comput. Sci. DMTCS 15(1), 1–14 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Coxeter, H.S.M.: Self-dual configurations and regular graphs. Bull. Am. Math. Soc. 56(5), 413–455 (1950)

    Article  MathSciNet  Google Scholar 

  6. Erwin, D., Harary, F.: Destroying automorphisms by fixing nodes. Discrete Math. 306, 3244–3252 (2006)

    Article  MathSciNet  Google Scholar 

  7. Frucht, R.: Die gruppe des Petersen’schen Graphen und der Kantensysteme der regularen Polyeder. Commentarii Mathematici Helvetici 9(1), 217–223 (1936)

    Article  MathSciNet  Google Scholar 

  8. Frucht, R., Graver, J.E., Watkins, M.E.: The groups of the generalized Petersen graphs. Proc. Camb. Philos. Soc. 70(2), 211–218 (1971)

    Article  MathSciNet  Google Scholar 

  9. Godsil, C., Royle, G.F.: Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

    Book  MATH  Google Scholar 

  10. Kutnar, K., Petecki, P.: On automorphisms and structural properties of double generalized Petersen graphs. Discrete Math. 339, 2861–2870 (2016)

    Article  MathSciNet  Google Scholar 

  11. Pan, J., Guo, X.: The full automorphism groups determining sets and resolving sets of coprime graphs. Graphs Comb. 35(2), 485–501 (2019)

    Article  MathSciNet  Google Scholar 

  12. Watkins, M.E.: A theorem on tait colorings with an application to the generalized petersen graphs. J. Comb. Theory 6(2), 152–164 (1969)

    Article  MathSciNet  Google Scholar 

  13. Zhou, J.-X., Feng, Y.-Q.: Cubic vertex-transitive non-Cayley graphs of order \(8p\). Electron. J. Comb. 19, 53 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author is thankful to the anonymous referees for their fruitful suggestions. The author also acknowledge the financial support received under the FRPDF grant of Presidency University, Kolkata and DST-SERB-SRG/2019/000475.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angsuman Das .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section, we provide two Sage code for confirming the determining sets of generalized Petersen graphs and double generalized Petersen graphs. The codes are given for G(10, 2) and DP(10, 2). Readers may check for determining sets of other members of these two families by suitably editing the values of the parameters (Fig. 1).

Fig. 1.
figure 1

Sage Code for finding a determining set for G(10, 2) (left) and DP(10, 2) (right)

It is checked that \(\{u_0,v_1\}\) is a determining set for G(10, 2) and \(\{x_0,v_1\}\) is a determining set for DP(10, 2). The output of both the codes are 1, showing that there exists exactly one automorphism (namely, the identity automorphism) which stabilizes both \(u_0\) and \(v_1\), and \(x_0\) and \(v_1\), respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, A. (2020). Determining Number of Generalized and Double Generalized Petersen Graph. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics