Skip to main content

On the Minimum Satisfiability Problem

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Included in the following conference series:

Abstract

We characterize the optimal solution to the LP relaxation of the standard formulation for the minimum satisfiability problem. Based on the characterization, we give a \(O(nm^2)\) combinatorial algorithm to solve the fractional version of the minimum satisfiability problem optimally where n(m) is the number of variables (clauses). As a by-product, we obtain a \(2(1-1/2^k)\) approximation algorithm for the minimum satisfiability problem where k is the maximum number of literals in any clause. We also give a simple linear time 2 approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arif, U.M.: On primal-dual schema for the minimum satisfiability problem. Master’s thesis, University of Lethbridge, Canada (2017)

    Google Scholar 

  • Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981). ISSN 0196–6774

    Article  MathSciNet  MATH  Google Scholar 

  • Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. North-Holland Math. Stud. 109, 27–45 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Berman, P., Fujito, T.: On approximation properties of the independent set problem for low degree graphs. Theory Comput. Syst. 32(2), 115–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas, D., Teo, C., Vohra, R.: On dependent randomized rounding algorithms. Oper. Res. Lett. 24(3), 105–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourjolly, J.-M., Pulleyblank, W.R.: König-Everváry graphs, 2-bicritical graphs and fractional matchings. Discrete Appl. Math. 24(1–3), 63–82 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158, New York, NY, USA. ACM (1971)

    Google Scholar 

  • Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Goemans, M.X., Williamson, D.P.: New \(\frac{3}{4}\)-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Hochbaum, D.S.: Instant recognition of half integrality and 2-approximations. In: Jansen, K., Rolim, J. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 99–110. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053967

    Chapter  Google Scholar 

  • Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Appl. Math. 6(3), 243–254 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Iranmanesh, E.: Algorithms for Problems in Voting and Scheduling. Ph.D. thesis, Simon Fraser University (2016)

    Google Scholar 

  • Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2- \varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohli, R., Krishnamurti, R., Mirchandani, P.: The minimum satisfiability problem. SIAM J. Discret. Math. 7(2), 275–283 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Krishnamurti, R., Gaur, D.R., Ghosh, S.K., Sachs, H.: Berge’s theorem for the maximum charge problem. Discrete Optim. 3(2), 174–178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Marathe, M., Ravi, S.: On approximation algorithms for the minimum satisfiability problem. Inf. Process. Lett. 58(1), 23–29 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Informatica 22(1), 115–123 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 765–774. ACM (2013)

    Google Scholar 

  • Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Courier Corporation, North Chelmsford (1982)

    MATH  Google Scholar 

  • Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34(2), 250–256 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Yannakakis, M.: On the approximation of maximum satisfiability. In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1992, pp. 1–9, Philadelphia, PA, USA (1992). ISBN 0-89791-466-X

    Google Scholar 

Download references

Acknowledgments

Robert Benkoczi, Daya Gaur, Ramesh Krishnamurti would like to acknowledge the support from NSERC in the form of individual discovery grants. The authors would like thank the reviewers for the comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daya Ram Gaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arif, U., Benkoczi, R., Gaur, D.R., Krishnamurti, R. (2020). On the Minimum Satisfiability Problem. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics