Skip to main content

Minimum Conflict Free Colouring Parameterized by Treewidth

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Included in the following conference series:

  • 1093 Accesses

Abstract

Conflict free q-Colouring of a graph G refers to the colouring of a subset of vertices of G using q colours such that every vertex has a neighbour of unique colour. In this paper, we study the Minimum Conflict free q-Colouring problem. Given a graph G and a fixed constant q, Minimum Conflict free q-Colouring is to find a Conflict free q-Colouring of G that minimises the number of coloured vertices. We study the Minimum Conflict free q-Colouring problem parameterized by the treewidth of G. We give an FPT algorithm for this problem and also prove running time lower bounds under Exponential Time Hypothesis (ETH) and Strong Exponential Time Hypothesis (SETH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel, Z., et al.: Conflict-free coloring of graphs. SIAM J. Discrete Math. 32(4), 2675–2702 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Kolay, S., Pieterse, A.: Parameterized complexity of conflict-free graph coloring. In: Algorithms and Data Structures - 16th International Symposium, WADS 2019, Edmonton, AB, Canada, 5–7 August 2019, Proceedings, pp. 168–180 (2019). https://doi.org/10.1007/978-3-030-24766-9_13

    Google Scholar 

  3. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cygan, M., et al.: Parameterized Algorithms, vol. 4. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Switzerland (2012). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  6. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kratochvíl, J., Křivánek, M.: On the computational complexity of codes in graphs. In: Chytil, M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp. 396–404. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0017162

    Chapter  Google Scholar 

  8. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably optimal. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 777–789. SIAM (2011)

    Google Scholar 

  9. Muzi, I., O’Brien, M.P., Reidl, F., Sullivan, B.D.: Being even slightly shallow makes life hard. In: 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), vol. 83, p. 79. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  10. Pach, J., Tardos, G.: Conflict-free colourings of graphs and hypergraphs. Comb. Probab. Comput. 18(5), 819–834 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM (1978)

    Google Scholar 

  12. Yen, C.C., Lee, R.C.T.: The weighted perfect domination problem. Inf. Process. Lett. 35(6), 295–299 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeesha Ashok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashok, P., Bhargava, R., Gupta, N., Khalid, M., Yadav, D. (2020). Minimum Conflict Free Colouring Parameterized by Treewidth. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics