Abstract
In order to understand underlying structural regularities in a graph, a basic and useful technique, known as modular decomposition, looks for subsets of vertices that have the exact same neighbourhood to the outside. These are known as modules and there exist linear-time algorithms to find them. This notion however is too strict, especially when dealing with graphs that arise from real world data. This is why it is important to relax this condition by allowing some noise in the data. However, generalizing modular decomposition is far from being obvious since most of the proposals lose the algebraic properties of modules and therefore most of the nice algorithmic consequences. In this paper we introduce the notion of \(\epsilon \)-module which seems to be a good compromise that maintains some of the algebraic structure. Among the main results in the paper, we show that minimal \(\epsilon \)-modules can be computed in polynomial time, on the other hand for maximal \(\epsilon \)-modules it is already NP-hard to compute if a graph admits an 1-parallel decomposition, i.e. one step of decomposition of \(\epsilon \)-module with \(\epsilon =1\).
This work is supported by the ANR-France Project Hosigra (ANR-17-CE40-0022).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use \(\epsilon \) to denote small error, despite being greater than 1.
References
Bonsma, P.: The complexity of the matching-cut problem for planar graphs and other graph classes. JGT 62(2), 109–126 (2009)
Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter 2. Theoret. Comput. Sci. 407(1–3), 574–582 (2008)
Bui-Xuan, B., Habib, M., Limouzy, V., de Montgolfier, F.: Algorithmic aspects of a general modular decomposition theory. Discrete Appl. Math. 157(9), 1993–2009 (2009)
Bui-Xuan, B., Habib, M., Rao, M.: Tree-representation of set families and applications to combinatorial decompositions. Eur. J. Comb. 33(5), 688–711 (2012)
Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)
Chvátal, V.: Recognizing decomposable graphs. JGT 8(1), 51–53 (1984)
Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981)
Ehrenfeucht, A., Harju, T., Rozenberg, G.: Theory of 2-structures. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 1–14. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60084-1_58
Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part II: representation through labeled tree families. Theor. Comput. Sci. 70(3), 305–342 (1990)
Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theor. Comput. Sci. 349(1), 67–81 (2005)
Fujishige, S.: Submodular Functions and Optimization. North-Holland, Amsterdam (1991)
Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biol. 5(8), R57 (2004)
Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungaricae 18, 25–66 (1967)
Graham, R.: On primitive graphs and optimal vertex assignments. Ann. N.Y. Acad. Sci. 175, 170–186 (1970)
Habib, M., de Montgolfier, F., Mouatadid, L., Zou, M.: A general algorithmic scheme for modular decompositions of hypergraphs and applications. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 251–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8_21
Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)
Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: an interesting algorithmic tool kit. Int. J. Found. Comput. Sci. 10(2), 147–170 (1999)
Hsu, W.: Decomposition of perfect graphs. JCTB 43(1), 70–94 (1987)
James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected graphs. In: Proceedings of the 3rd Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic Univ., Boca Raton, Flo., pp. 281–290 (1972)
Kratsch, D., Le, V.B.: Algorithms solving the matching cut problem. Theor. Comput. Sci. 609, 328–335 (2016)
Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions. Ann. Oper. Res. 6, 195–225 (1985)
Möhring, R., Radermacher, F.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discret. Math. 19, 257–356 (1984)
Moshi, A.M.: Matching cutsets in graphs. JGT 13(5), 527–536 (1989)
Nabti, C., Seba, H.: Querying massive graph data: a compress and search approach. Future Gener. Comput. Syst. 74, 63–75 (2017)
Papadopoulos, C., Voglis, C.: Drawing graphs using modular decomposition. J. Graph Algorithms Appl. 11(2), 481–511 (2007)
Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_26
Rusu, I., Spinrad, J.P.: Forbidden subgraph decomposition. Discrete Math. 247(1–3), 159–168 (2002)
Seinsche, D.: On a property of the class of n-colorable graphs. JCTB 16, 191–193 (1974)
Serafino, P.: Speeding up graph clustering via modular decomposition based compression. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, Coimbra, Portugal, 18–22 March 2013, pp. 156–163 (2013)
Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica 27, 199–245 (1975)
Acknowledgments
The authors wish to thank anonymous reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Habib, M., Mouatadid, L., Zou, M. (2020). Approximating Modular Decomposition Is Hard. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-39219-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39218-5
Online ISBN: 978-3-030-39219-2
eBook Packages: Computer ScienceComputer Science (R0)