Skip to main content

Approximating Modular Decomposition Is Hard

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Included in the following conference series:

  • 938 Accesses

Abstract

In order to understand underlying structural regularities in a graph, a basic and useful technique, known as modular decomposition, looks for subsets of vertices that have the exact same neighbourhood to the outside. These are known as modules and there exist linear-time algorithms to find them. This notion however is too strict, especially when dealing with graphs that arise from real world data. This is why it is important to relax this condition by allowing some noise in the data. However, generalizing modular decomposition is far from being obvious since most of the proposals lose the algebraic properties of modules and therefore most of the nice algorithmic consequences. In this paper we introduce the notion of \(\epsilon \)-module which seems to be a good compromise that maintains some of the algebraic structure. Among the main results in the paper, we show that minimal \(\epsilon \)-modules can be computed in polynomial time, on the other hand for maximal \(\epsilon \)-modules it is already NP-hard to compute if a graph admits an 1-parallel decomposition, i.e. one step of decomposition of \(\epsilon \)-module with \(\epsilon =1\).

This work is supported by the ANR-France Project Hosigra (ANR-17-CE40-0022).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use \(\epsilon \) to denote small error, despite being greater than 1.

References

  1. Bonsma, P.: The complexity of the matching-cut problem for planar graphs and other graph classes. JGT 62(2), 109–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter 2. Theoret. Comput. Sci. 407(1–3), 574–582 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bui-Xuan, B., Habib, M., Limouzy, V., de Montgolfier, F.: Algorithmic aspects of a general modular decomposition theory. Discrete Appl. Math. 157(9), 1993–2009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bui-Xuan, B., Habib, M., Rao, M.: Tree-representation of set families and applications to combinatorial decompositions. Eur. J. Comb. 33(5), 688–711 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chvátal, V.: Recognizing decomposable graphs. JGT 8(1), 51–53 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ehrenfeucht, A., Harju, T., Rozenberg, G.: Theory of 2-structures. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 1–14. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60084-1_58

    Chapter  Google Scholar 

  9. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part II: representation through labeled tree families. Theor. Comput. Sci. 70(3), 305–342 (1990)

    Article  MATH  Google Scholar 

  10. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theor. Comput. Sci. 349(1), 67–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujishige, S.: Submodular Functions and Optimization. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  12. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biol. 5(8), R57 (2004)

    Article  Google Scholar 

  13. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungaricae 18, 25–66 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graham, R.: On primitive graphs and optimal vertex assignments. Ann. N.Y. Acad. Sci. 175, 170–186 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Habib, M., de Montgolfier, F., Mouatadid, L., Zou, M.: A general algorithmic scheme for modular decompositions of hypergraphs and applications. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 251–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8_21

    Chapter  Google Scholar 

  16. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  17. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: an interesting algorithmic tool kit. Int. J. Found. Comput. Sci. 10(2), 147–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsu, W.: Decomposition of perfect graphs. JCTB 43(1), 70–94 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected graphs. In: Proceedings of the 3rd Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic Univ., Boca Raton, Flo., pp. 281–290 (1972)

    Google Scholar 

  20. Kratsch, D., Le, V.B.: Algorithms solving the matching cut problem. Theor. Comput. Sci. 609, 328–335 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions. Ann. Oper. Res. 6, 195–225 (1985)

    Article  MathSciNet  Google Scholar 

  22. Möhring, R., Radermacher, F.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discret. Math. 19, 257–356 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Moshi, A.M.: Matching cutsets in graphs. JGT 13(5), 527–536 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nabti, C., Seba, H.: Querying massive graph data: a compress and search approach. Future Gener. Comput. Syst. 74, 63–75 (2017)

    Article  Google Scholar 

  25. Papadopoulos, C., Voglis, C.: Drawing graphs using modular decomposition. J. Graph Algorithms Appl. 11(2), 481–511 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2_26

    Chapter  Google Scholar 

  27. Rusu, I., Spinrad, J.P.: Forbidden subgraph decomposition. Discrete Math. 247(1–3), 159–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seinsche, D.: On a property of the class of n-colorable graphs. JCTB 16, 191–193 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Serafino, P.: Speeding up graph clustering via modular decomposition based compression. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, Coimbra, Portugal, 18–22 March 2013, pp. 156–163 (2013)

    Google Scholar 

  30. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica 27, 199–245 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habib, M., Mouatadid, L., Zou, M. (2020). Approximating Modular Decomposition Is Hard. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics