Skip to main content

Using a Conditional Generative Adversarial Network (cGAN) for Prostate Segmentation

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2019)

Abstract

Prostate cancer is the second most commonly diagnosed cancer among men and currently multi-parametric MRI is a promising imaging technique used for clinical workup of prostate cancer. Accurate detection and localisation of the prostate tissue boundary on various MRI scans can be helpful for obtaining a region of interest for Computer Aided Diagnosis systems. In this paper, we present a fully automated detection and segmentation pipeline using a conditional Generative Adversarial Network (cGAN). We investigated the robustness of the cGAN model against adding Gaussian noise or removing noise from the training data. Based on the detection and segmentation metrics, de-noising did not show a significant improvement. However, by including noisy images in the training data, the detection and segmentation performance was improved in each 3D modality, which resulted in comparable to state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://phillipi.github.io/pix2pix.

References

  1. Birkbeck, N., Zhang, J., Requardt, M., Kiefer, B., Gall, P., Kevin Zhou, S.: Region-specific hierarchical segmentation of MR prostate using discriminative learning. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  2. Cancer-Research-UK: Prostate cancer statistics (2018). http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer

  3. Chen, G., Zhang, P., Wu, Y., Shen, D., Yap, P.T.: Denoising magnetic resonance images using collaborative non-local means. Neurocomputing 177, 215–227 (2016)

    Article  Google Scholar 

  4. Cheng, R., et al.: Active appearance model and deep learning for more accurate prostate segmentation on MRI. In: Medical Imaging 2016: Image Processing, vol. 9784, p. 97842I. International Society for Optics and Photonics (2016)

    Google Scholar 

  5. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)

    Article  Google Scholar 

  6. Gao, Q., Rueckert, D., Edwards, P.: An automatic multi-atlas based prostate segmentation using local appearance-specific atlases and patch-based voxel weighting. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012a (2012)

    Google Scholar 

  7. Ghose, S., et al.: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput. Methods Programs Biomed. 108(1), 262–287 (2012)

    Article  Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Hegde, J.V., et al.: Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J. Magn. Reson. Imaging 37(5), 1035–1054 (2013)

    Article  Google Scholar 

  10. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)

    Google Scholar 

  12. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90 (2011)

    Article  Google Scholar 

  13. Karimi, D., Samei, G., Shao, Y., Salcudean, T.: A novel deep learning-based method for prostate segmentation in T2-weighted magnetic resonance imaging (2017)

    Google Scholar 

  14. Kirschner, M., Jung, F., Wesarg, S.: Automatic prostate segmentation in MR images with a probabilistic active shape model. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  15. Litjens, G., Karssemeijer, N., Huisman, H.: A multi-atlas approach for prostate segmentation in MR images. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  16. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

  17. Maan, B., van der Heijden, F.: Prostate MR image segmentation using 3D active appearance models. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  18. Malmberg, F., Strand, R., Kullberg, J., Nordenskjöld, R., Bengtsson, E.: Smart paint a new interactive segmentation method applied to MR prostate segmentation. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  19. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  20. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  21. Ou, Y., Doshi, J., Erus, G., Davatzikos, C.: Multi-atlas segmentation of the prostate: a zooming process with robust registration and atlas selection. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 7, pp. 1–7 (2012)

    Google Scholar 

  22. Pasquier, D., Lacornerie, T., Vermandel, M., Rousseau, J., Lartigau, E., Betrouni, N.: Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 68(2), 592–600 (2007)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Toth, R., Madabhushi, A.: Deformable landmark-free active appearance models: application to segmentation of multi-institutional prostate MRI data. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  25. Vincent, G., Guillard, G., Bowes, M.: Fully automatic segmentation of the prostate using active appearance models. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  26. Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A.: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, pp. 66–72 (2017)

    Google Scholar 

  27. Yuan, J., Qiu, W., Ukwatta, E., Rajchl, M., Sun, Y., Fenster, A.: An efficient convex optimization approach to 3D prostate MRI segmentation with generic star shape prior. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 7512, pp. 82–89 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Alun Jones and Sandy Spence for their support and maintenance of the GPU and the computer systems used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Hamidinekoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grall, A., Hamidinekoo, A., Malcolm, P., Zwiggelaar, R. (2020). Using a Conditional Generative Adversarial Network (cGAN) for Prostate Segmentation. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics