Skip to main content

A Fully Automated Segmentation System of Positron Emission Tomography Studies

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2019)

Abstract

In this paper, we present an automatic system for the brain metastasis delineation in Positron Emission Tomography images. The segmentation process is fully automatic, so that intervention from the user is never required making the entire process completely repeatable. Contouring is performed using an enhanced local active segmentation.

The proposed system is, at first instance, evaluated on four datasets of phantom experiments to assess the performance under different contrast ratio scenarios, and, successively, on ten clinical cases in radiotherapy environment.

Phantom studies show an excellent performance with a dice similarity coefficient rate greater than 92% for larger spheres. In clinical cases, automatically delineated tumors show high agreement with the gold standard with a dice similarity coefficient of 88.35 ± 2.60%.

These results show that the proposed system can be successfully employed in Positron Emission Tomography images, and especially in radiotherapy treatment planning, to produce fully automatic segmentations of brain cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Comelli, A., Bruno, A., Di Vittorio, M.L., et al.: Automatic Multi-seed Detection for MR Breast Image Segmentation, pp. 706–717. Springer, Cham (2017)

    Google Scholar 

  2. Chandarana, H., Wang, H., Tijssen, R.H.N., Das, I.J.: Emerging role of MRI in radiation therapy. J. Magn. Reson. Imaging 48, 1468–1478 (2018). https://doi.org/10.1002/jmri.26271

    Article  Google Scholar 

  3. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. (2016). https://doi.org/10.1002/ima.22168

    Article  Google Scholar 

  4. Astner, S.T., Dobrei-Ciuchendea, M., Essler, M., et al.: Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 72, 1161–1167 (2008). https://doi.org/10.1016/j.ijrobp.2008.02.058

    Article  Google Scholar 

  5. Comelli, A., Stefano, A., Bignardi, S., et al.: Active contour algorithm with discriminant analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78 (2019). https://doi.org/10.1016/J.ARTMED.2019.01.002

    Article  Google Scholar 

  6. Comelli, A., Stefano, A., Russo, G., et al.: K-nearest neighbor driving active contours to delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). https://doi.org/10.1016/j.engappai.2019.02.005

    Article  Google Scholar 

  7. Hatt, M., Cheze Le Rest, C., Albarghach, N., et al.: PET functional volume delineation: a robustness and repeatability study. Eur. J. Nucl. Med. Mol. Imaging 38, 663–672 (2011). https://doi.org/10.1007/s00259-010-1688-6

    Article  Google Scholar 

  8. Berthon, B., Spezi, E., Galavis, P., et al.: Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation. Med Phys. (2017). https://doi.org/10.1002/mp.12312

    Article  Google Scholar 

  9. Foster, B., Bagci, U., Mansoor, A., et al.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014). https://doi.org/10.1016/j.compbiomed.2014.04.014

    Article  Google Scholar 

  10. Comelli, A., Stefano, A., Russo, G., et al.: A smart and operator independent system to delineate tumours in Positron Emission Tomography scans. Comput. Biol. Med. (2018). https://doi.org/10.1016/J.COMPBIOMED.2018.09.002

    Article  Google Scholar 

  11. Soret, M., Bacharach, S.L., Buvat, I.I.: Partial-volume effect in PET tumor imaging. J. Nucl. Med. 48, 932–945 (2007). https://doi.org/10.2967/jnumed.106.035774

    Article  Google Scholar 

  12. Stefano, A., Vitabile, S., Russo, G., et al.: A fully automatic method for biological target volume segmentation of brain metastases. Int. J. Imaging Syst. Technol. 26, 29–37 (2016). https://doi.org/10.1002/ima.22154

    Article  Google Scholar 

  13. Stefano, A., et al.: An automatic method for metabolic evaluation of gamma knife treatments. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 579–589. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23231-7_52

    Chapter  Google Scholar 

  14. Lankton, S., Nain, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evolutions for image segmentation. In: Proceedings of the SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 16 March 2007, p. 65104U (2007). https://doi.org/10.1117/12.709700

  15. Udupa, J.K., Leblanc, V.R., Zhuge, Y., et al.: A framework for evaluating image segmentation algorithms. Comput. Med. Imaging Graph. 30, 75–87 (2006). https://doi.org/10.1016/j.compmedimag.2005.12.001

    Article  Google Scholar 

  16. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23, 903–921 (2004). https://doi.org/10.1109/TMI.2004.828354

    Article  Google Scholar 

  17. Lankton, S., Nain, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evolutions for image segmentation. 65104U (2007). https://doi.org/10.1117/12.709700

  18. Day, E., Betler, J., Parda, D., et al.: A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med. Phys. 36, 4349–4358 (2009). https://doi.org/10.1118/1.3213099

    Article  Google Scholar 

  19. Stefano, A., Vitabile, S., Russo, G., et al.: An enhanced random walk algorithm for delineation of head and neck cancers in PET studies. Med. Biol. Eng. Comput. 55, 897–908 (2017). https://doi.org/10.1007/s11517-016-1571-0

    Article  Google Scholar 

  20. Belhassen, S., Zaidi, H.: A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med. Phys. 37, 1309–1324 (2010). https://doi.org/10.1118/1.3301610

    Article  Google Scholar 

  21. Licari, L., et al.: Use of the KSVM-based system for the definition, validation and identification of the incisional hernia recurrence risk factors. Il Giornale di chirurgia 40(1), 32–38 (2019)

    Google Scholar 

  22. Agnello, L., Comelli, A., Vitabile, S.: Feature dimensionality reduction for mammographic report classification. In: Pop, F., Kołodziej, J., Di Martino, B. (eds.) Resource Management for Big Data Platforms. CCN, pp. 311–337. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44881-7_15

    Chapter  Google Scholar 

  23. Comelli, A., et al.: A kernel support vector machine based technique for Crohn’s disease classification in human patients. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_25

    Chapter  Google Scholar 

  24. Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification in pet oncological studies. Pattern Recogn. Image Anal. 28, 121–128 (2018). https://doi.org/10.1134/S1054661818010054

    Article  Google Scholar 

  25. Comelli, A., Agnello, L., Vitabile, S.: An ontology-based retrieval system for mammographic reports. In: Proceedings of IEEE Symposium Computers and Communication (2016). https://doi.org/10.1109/ISCC.2015.7405644

Download references

Acknowledgments

Authors would like to thank Prof. Anthony Yezzi, Dr. Samuel Bignardi, Dr. Giorgio Russo, MD. Maria Gabriella Sabini, and MD. Massimo Ippolito for their crucial support in the management of the proposed study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Comelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Comelli, A., Stefano, A. (2020). A Fully Automated Segmentation System of Positron Emission Tomography Studies. In: Zheng, Y., Williams, B., Chen, K. (eds) Medical Image Understanding and Analysis. MIUA 2019. Communications in Computer and Information Science, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-030-39343-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39343-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39342-7

  • Online ISBN: 978-3-030-39343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics