Skip to main content

Hyperspectral Image Classification via Hierarchical Features Adaptive Fusion Network

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11691))

Included in the following conference series:

  • 1182 Accesses

Abstract

Recently, convolutional neural networks have attracted much attention due to its good performance in hyperspectral image classification. However, excessively increasing the depth of the network will lead to overfitting and vanishing gradient. Besides, previous networks rarely consider the related information among different convolution layers. In this paper we propose a hierarchical deep features adaptive fusion network (FAFNet) to address the above two problems. On the one hand, we use dense connectivity to overcome vanishing gradient and overfitting. On the other hand, we adaptively fuse different convolution layers by the learned weights which utilizing softmax to calculate. Experimental results on two well-known datasets demonstrate the excellent performance of the proposed method compared with other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren, J., Zabalza, J., et al.: Effective feature extraction and data reduction with hyperspectral imaging in remote sensing. IEEE Sig. Process. Mag. 31(4), 149–154 (2014)

    Article  Google Scholar 

  2. Zabalza, J., Ren, J., et al.: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185, 1–10 (2016)

    Article  Google Scholar 

  3. Bioucas-Dias, J.M., et al.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Rem. Sens. Mag. 1(2), 6–36 (2013)

    Article  Google Scholar 

  4. Li, W., Wu, G., Du, Q.: Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci. Rem. Sens. Lett. 14(5), 597–601 (2017)

    Article  Google Scholar 

  5. Zhang, Y., Du, B., Zhang, L.: A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans. Geosci. Rem. Sens. 53(3), 1346–1354 (2015)

    Article  Google Scholar 

  6. Zhang, L., Tao, D., Huang, X., Du, B.: Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. IEEE Trans. Geosci. Rem. Sens. 52(8), 4955–4965 (2014)

    Article  Google Scholar 

  7. Blanzieri, E., Melgani, F.: Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Rem. Sens. 46(6), 1804–1811 (2008)

    Article  Google Scholar 

  8. Ham, J., Chen, Y., et al.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 43(3), 492–501 (2005)

    Article  Google Scholar 

  9. Cao, F., et al.: Linear vs nonlinear extreme learning machine for spectral-spatial classification of hyperspectral image. Sensors 17, 2603 (2017)

    Article  Google Scholar 

  10. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Rem. Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  11. Fang, L., et al.: Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans. Instrum. Measur. 66(7), 1646–1657 (2017)

    Article  Google Scholar 

  12. Qiao, T., Yang, Z., et al.: Joint bilateral filtering and spectral similarity-based sparse representation: a generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recogn. 77, 316–328 (2017)

    Article  Google Scholar 

  13. Chen, Y., et al.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(6), 2094–2107 (2014)

    Google Scholar 

  14. Chen, Y., et al.: Spectral spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 8(6), 1–12 (2015)

    Google Scholar 

  15. Chen, Y., et al.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 54(10), 6262–6251 (2016)

    Google Scholar 

  16. Huang, G., Liu, Z., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on CVPR, pp. 2261–2269 (2017)

    Google Scholar 

  17. Sheng, W., et al.: Multi-scale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. arXiv:1905.06133 (2019)

  18. Li, X., et al.: Selective Kernel Networks. arXiv:1903.06586 (2019)

  19. Hu, W., et al.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2, 1–12 (2015)

    Article  Google Scholar 

  20. Li, W., Wu, G., et al.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Rem. Sens. 55(2), 844–853 (2016)

    Article  Google Scholar 

  21. Mei, S., et al.: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 55(8), 4520–4533 (2017)

    Article  Google Scholar 

  22. Fang, L., Liu, Z., Song, W.: Deep hashing neural networks for hyperspectral image feature extraction. IEEE Geosci. Rem. Sens. Lett., 1–5 (2019)

    Google Scholar 

  23. Zhong, Z., Li, J., et al.: Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans. Geosci. Rem. Sens. 56, 847–858 (2018)

    Article  Google Scholar 

  24. Waske, B., et al.: Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 48(7), 2880–2889 (2010)

    Article  Google Scholar 

  25. Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Rem. Sens. 8, 438–447 (2017)

    Google Scholar 

  26. Wang, L., Peng, J., Sun, W.: Spatial-spectral squeeze-and-excitation residual network for hyperspectral image classification. Rem. Sens. 11, 884 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their constructive comments which have helped improve the paper. This work was supported by National Natural Science Foundation of China (61502003, 71501002, 61472002, 61671018, 61860206004), by the Key Research Project of Humanities and Social Sciences in Colleges and Universities of Anhui Province under Grant SK2019A0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Z., Xu, Q., Li, F., Mei, Y., Luo, B. (2020). Hyperspectral Image Classification via Hierarchical Features Adaptive Fusion Network. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics