Skip to main content

A Multi-view Images Classification Based on Shallow Convolutional Neural Network

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11691))

Included in the following conference series:

  • 1186 Accesses

Abstract

Multi-view images represent the target object from multiple perspectives. Learning the target object information from different viewpoints helps to improve the accuracy of multi-view images classification. We propose a multi-view recognition method (SCNN-a) based on shallow convolutional neural network. In order to improve the generalization capability and classification performance of model, we develop a new multi-view images classification method (SCNN), which adds Dropout (after each max-pooling layer) technology to SCNN-a. SCNN-a and SCNN regard the images from predefined views as latent variables, and extract the high-order features of multi-view images with two convolutional layers. Experimental results show that SCNN achieves similar accuracy to the state-of-the-art result of [7] with less layers and time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsalan Soltani, A., Huang, H., Wu, J., Kulkarni, T.D., Tenenbaum, J.B.: Synthesizing 3D shapes via modeling multi-view depth maps and silhouettes with deep generative networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1511–1519 (2017)

    Google Scholar 

  2. Arvind, V., Costa, A., Badgeley, M., Cho, S., Oermann, E.: Wide and deep volumetric residual networks for volumetric image classification. arXiv preprint arXiv:1710.01217 (2017)

  3. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  4. Dominguez, M., Dhamdhere, R., Petkar, A., Jain, S., Sah, S., Ptucha, R.: General-purpose deep point cloud feature extractor. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1972–1981. IEEE (2018)

    Google Scholar 

  5. Dominguez, M., Such, F.P., Sah, S., Ptucha, R.: Towards 3D convolutional neural networks with meshes. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3929–3933. IEEE (2017)

    Google Scholar 

  6. Garcia-Garcia, A., Gomez-Donoso, F., Garcia-Rodriguez, J., Orts-Escolano, S., Cazorla, M., Azorin-Lopez, J.: Pointnet: a 3D convolutional neural network for real-time object class recognition. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1578–1584. IEEE (2016)

    Google Scholar 

  7. Han, Z., Shang, M., Liu, Y.S., Zwicker, M.: View inter-prediction GAN: unsupervised representation learning for 3D shapes by learning global shape memories to support local view predictions. arXiv preprint arXiv:1811.02744 (2018)

  8. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  9. Kanezaki, A., Matsushita, Y., Nishida, Y.: RotationNet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5010–5019 (2018)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Lei, F.Y., Cai, J.: EIWCS: characterizing edges importance to weaken community structure. In: Applied Mechanics and Materials, vol. 556, pp. 6054–6057. Trans Tech Publ (2014)

    Google Scholar 

  12. Lei, F., Cai, J., Dai, Q., Zhao, H.: Deep learning based proactive caching for effective WSN-enabled vision applications. Complexity 2019, 12 p. (2019)

    Google Scholar 

  13. Lei, F.Y., Dai, Q.Y., Cai, J., Zhao, H.M., Liu, X., Liu, Y.: A Proactive Caching Strategy Based on Deep Learning in EPC of 5G. In: Ren, J., Hussain, A., Zheng, J., Liu, C.-L., Luo, B., Zhao, H., Zhao, X. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 738–747. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_72

    Chapter  Google Scholar 

  14. Liu, S., Giles, L., Ororbia, A.: Learning a hierarchical latent-variable model of 3D shapes. In: 2018 International Conference on 3D Vision (3DV), pp. 542–551. IEEE (2018)

    Google Scholar 

  15. Ma, C., Guo, Y., Lei, Y., An, W.: Binary volumetric convolutional neural networks for 3-D object recognition. IEEE Trans. Instrum. Meas. 99, 1–11 (2018)

    Google Scholar 

  16. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  17. Ren, J., Wang, D., Jiang, J.: Effective recognition of MCCS in mammograms using an improved neural classifier. Eng. Appl. Artif. Intell. 24(4), 638–645 (2011)

    Article  Google Scholar 

  18. Ren, J., Xu, M., Orwell, J., Jones, G.A.: Multi-camera video surveillance for real-time analysis and reconstruction of soccer games. Mach. Vis. Appl. 21(6), 855–863 (2010)

    Article  Google Scholar 

  19. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3693–3702 (2017)

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Solli, M., Bergstrom, S.: Image retrieval and processing systems and methods, US Patent App. 10/180,950, 15 Jan 2019

    Google Scholar 

  22. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE international conference on computer vision. pp. 945–953 (2015)

    Google Scholar 

  23. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  24. Wang, Z., Ren, J., Zhang, D., Sun, M., Jiang, J.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  25. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances In Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  26. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  27. Xu, X., Todorovic, S.: Beam search for learning a deep convolutional neural network of 3D shapes. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3506–3511. IEEE (2016)

    Google Scholar 

  28. Yan, Y., et al.: Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  29. Zanuttigh, P., Minto, L.: Deep learning for 3D shape classification from multiple depth maps. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3615–3619. IEEE (2017)

    Google Scholar 

  30. Zhang, A., Sun, G., Ren, J., Li, X., Wang, Z., Jia, X.: A dynamic neighborhood learning-based gravitational search algorithm. IEEE Trans. Cybern. 48(1), 436–447 (2016)

    Article  Google Scholar 

  31. Zheng, J., Liu, Y., Ren, J., Zhu, T., Yan, Y., Yang, H.: Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimension. Syst. Sig. Process. 27(4), 989–1005 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This research was funded by the Scientific and Technological Projects of Guangdong Province grant number (2017A050501039), the Guangdong Province General Colleges and Universities Featured Innovation grant number (2015GXJK080), the Qingyuan Science and Technology Plan Project grant number (170809111721-249, 170802171710591), and the Scientific and Technological Projects of Guangdong Province (2019A070701013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyuan Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, F., Liu, X., Dai, Q., Zhao, H., Wang, L., Zhou, R. (2020). A Multi-view Images Classification Based on Shallow Convolutional Neural Network. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics