Skip to main content

On the Cycle Augmentation Problem: Hardness and Approximation Algorithms

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11926))

Included in the following conference series:

Abstract

In the k-Connectivity Augmentation Problem we are given a k-edge-connected graph and a set of additional edges called links. Our goal is to find a set of links of minimum cardinality whose addition to the graph makes it \((k+1)\)-edge-connected. There is an approximation preserving reduction from the mentioned problem to the case \(k=1\) (a.k.a. the Tree Augmentation Problem or TAP) or \(k=2\) (a.k.a. the Cactus Augmentation Problem or CacAP). While several better-than-2 approximation algorithms are known for TAP, nothing better is known for CacAP (hence for k-Connectivity Augmentation in general).

As a first step towards better approximation algorithms for CacAP, we consider the special case where the input cactus consists of a single cycle, the Cycle Augmentation Problem (CycAP). This apparently simple special case retains part of the hardness of the general case. In particular, we are able to show that it is \(\mathrm {APX}\)-hard.

In this paper we present a combinatorial \(\left( \frac{3}{2}+\varepsilon \right) \)-approximation for CycAP, for any constant \(\varepsilon >0\). We also present an LP formulation with a matching integrality gap: this might be useful to address the general case of the problem.

Partially supported by the SNSF Grant 200021_159697/1, the SNSF Excellence Grant 200020B_182865/1, the National Science Centre, Poland, grant numbers 2015/17/N/ST6/03684, 2015/18/E/ST6/00456 and 2018/28/T/ST6/00366. K. Sornat was also supported by the Foundation for Polish Science (FNP) within the START programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recall that \(G=(V,E)\) is k-connected if for every set of edges \(F\subseteq E\), \(|F|\le k-1\), the graph \(G'=(V,E\setminus F)\) is connected.

  2. 2.

    We recall that a cactus G is a connected undirected graph in which every edge belongs to exactly one cycle. For technical reasons it is convenient to allow cycles of length 2 consisting of parallel edges.

  3. 3.

    A path visits a cycle iff it includes an edge from the cycle.

  4. 4.

    This lemma implies that CycAP is FPT with parameter \(h_{\max }\).

  5. 5.

    For \(|S|\le 1\), we simply set \(\mathrm {OPT}_S=\emptyset \).

References

  1. Adjiashvili, D.: Beating approximation factor two for weighted tree augmentation with bounded costs. SODA 2017, 2384–2399 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Basavaraju, M., Fomin, F.V., Golovach, P., Misra, P., Ramanujan, M.S., Saurabh, S.: Parameterized algorithms to preserve connectivity. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 800–811. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_66

    Chapter  Google Scholar 

  3. Cheriyan, J., Gao, Z.: Approximating (unweighted) tree augmentation via lift-and-project, part I: stemless TAP. Algorithmica 80, 530–559 (2018)

    Article  MathSciNet  Google Scholar 

  4. Cheriyan, J., Gao, Z.: Approximating (unweighted) tree augmentation via lift-and-project, part II. Algorithmica 80(2), 608–651 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cheriyan, J., Jordán, T., Ravi, R.: On 2-coverings and 2-packings of laminar families. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 510–520. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48481-7_44

    Chapter  Google Scholar 

  6. Cheriyan, J., Karloff, H., Khandekar, R., Könemann, J.: On the integrality ratio for tree augmentation. Oper. Res. Lett. 36, 399–401 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cohen, N., Nutov, Z.: A (1 + Ln 2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius. APPROX/RANDOM 2011, 147–157 (2011)

    MATH  Google Scholar 

  8. Dinitz, E., Karzanov, A., Lomonosov, M.: On the structure of the system of minimum edge cuts of a graph. Stud. Discrete Optim. 290–306 (1976)

    Google Scholar 

  9. Even, G., Feldman, J., Kortsarz, G., Nutov, Z.: A 1.8 approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms 5, 21:1–21:17 (2009)

    Article  MathSciNet  Google Scholar 

  10. Fiorini, S., Groß, M., Könemann, J., Sanità, L.: Approximating weighted tree augmentation via Chvátal-Gomory cuts. SODA 2018, 817–831 (2018)

    MATH  Google Scholar 

  11. Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph augmentation problems. SIAM J. Comput. 10(2), 270–283 (1981)

    Article  MathSciNet  Google Scholar 

  12. Goemans, M.X., Goldberg, A.V., Plotkin, S., Shmoys, D.B., Tardos, E., Williamson, D.P.: Improved approximation algorithms for network design problems. SODA 1994, 223–232 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Grandoni, F., Kalaitzis, C., Zenklusen, R.: Improved approximation for tree augmentation: saving by rewiring. STOC 2018, 632–645 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Jain, K.: A factor 2 approximation algorithm for the generalized steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MathSciNet  Google Scholar 

  15. Khuller, S., Thurimella, R.: Approximation algorithms for graph augmentation. J. Algorithms 14, 214–225 (1993)

    Article  MathSciNet  Google Scholar 

  16. Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-connectivity network design problems. SIAM J. Comput. 33(3), 704–720 (2004)

    Article  MathSciNet  Google Scholar 

  17. Kortsarz, G., Nutov, Z.: A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms 12, 23:1–23:20 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kortsarz, G., Nutov, Z.: LP-relaxations for tree augmentation. In: APPROX/RANDOM 2016, pp. 13:1–13:16 (2016)

    Google Scholar 

  19. Marx, D., Végh, L.A.: Fixed-parameter algorithms for minimum-cost edge-connectivity augmentation. ACM Trans. Algorithms 11, 27:1–27:24 (2015)

    Article  MathSciNet  Google Scholar 

  20. Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Appl. Math. 126, 83–113 (2003)

    Article  MathSciNet  Google Scholar 

  21. Nutov, Z.: On the tree augmentation problem. In: ESA 2017, pp. 61:1–61:14 (2017)

    Google Scholar 

  22. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35, 96–144 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldo Gálvez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gálvez, W., Grandoni, F., Ameli, A.J., Sornat, K. (2020). On the Cycle Augmentation Problem: Hardness and Approximation Algorithms. In: Bampis, E., Megow, N. (eds) Approximation and Online Algorithms. WAOA 2019. Lecture Notes in Computer Science(), vol 11926. Springer, Cham. https://doi.org/10.1007/978-3-030-39479-0_10

Download citation

Publish with us

Policies and ethics