Skip to main content

Precedence-Constrained Scheduling and Min-Sum Set Cover

(Extended Abstract)

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2019)

Abstract

We consider a single-machine scheduling problem with bipartite AND/OR-constraints that is a natural generalization of (precedence-constrained) min-sum set cover. For min-sum set cover, Feige, Lovàsz and Tetali [15] showed that the greedy algorithm has an approximation guarantee of 4, and obtaining a better approximation ratio is NP-hard. For precedence-constrained min-sum set cover, McClintock, Mestre and Wirth [30] proposed an \(O(\sqrt{m})\)-approximation algorithm, where m is the number of sets. They also showed that obtaining an algorithm with performance \(O(m^{1/12-\varepsilon })\) is impossible, assuming the hardness of the planted dense subgraph problem.

The more general problem examined here is itself a special case of scheduling AND/OR-networks on a single machine, which was studied by Erlebach, Kääb and Möhring [13]. Erlebach et al. proposed an approximation algorithm whose performance guarantee grows linearly with the number of jobs, which is close to best possible, unless P = NP.

For the problem considered here, we give a new LP-based approximation algorithm. Its performance ratio depends only on the maximum number of OR-predecessors of any one job. In particular, in many relevant instances, it has a better worst-case guarantee than the algorithm by McClintock et al., and it also improves upon the algorithm by Erlebach et al. (for the special case considered here).

Yet another important generalization of min-sum set cover is generalized min-sum set cover, for which a 12.4-approximation was derived by Im, Sviridenko and Zwaan [23]. Im et al. conjecture that generalized min-sum set cover admits a 4-approximation, as does min-sum set cover. In support of this conjecture, we present a 4-approximation algorithm for another interesting special case, namely when each job requires that no less than all but one of its predecessors are completed before it can be processed.

This work has been supported by the Alexander von Humboldt Foundation with funds from the German Federal Ministry of Education and Research (BMBF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A random graph drawn from (mp) contains m vertices and the probability of the existence of an edge between any two vertices is equal to p.

  2. 2.

    One can also show that \(mc(\cdot ,k)\) and \(f_k(\cdot )\) are supermodular for any k.

References

  1. Ambühl, C., Mastrolilli, M.: Single machine precedence constrained scheduling is a vertex cover problem. Algorithmica 53(4), 488–503 (2009). https://doi.org/10.1007/s00453-008-9251-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: On the approximability of single-machine scheduling with precedence constraints. Math. Oper. Res. 36(4), 653–669 (2011). https://doi.org/10.1287/moor.1110.0512

    Article  MathSciNet  MATH  Google Scholar 

  3. Azar, Y., Gamzu, I., Yin, X.: Multiple intents re-ranking. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 669–678. ACM (2009). https://doi.org/10.1145/1536414.1536505

  4. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algorithm for generalized min-sum set cover. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1539–1545. SIAM (2010). https://doi.org/10.1137/1.9781611973075.125

  5. Bansal, N., Khot, S.: Optimal long code test with one free bit. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 453–462. IEEE (2009). https://doi.org/10.1109/FOCS.2009.23

  6. Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chromatic sums and distributed resource allocation. Inf. Comput. 140(2), 183–202 (1998). https://doi.org/10.1006/inco.1997.2677

    Article  MathSciNet  MATH  Google Scholar 

  7. Charikar, M., Naamad, Y., Wirth, A.: On approximating target set selection. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Leibniz International Proceedings in Informatics (LIPIcs), vol. 60, pp. 4:1–4:16 (2016). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4

  8. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of weighted completion times on a single machine. Discrete Appl. Math. 98(1–2), 29–38 (1999). https://doi.org/10.1016/S0166-218X(98)00143-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for average completion time scheduling. SIAM J. Comput. 31(1), 146–166 (2001). https://doi.org/10.1137/S0097539797327180

    Article  MathSciNet  MATH  Google Scholar 

  10. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Oper. Res. Lett. 25(5), 199–204 (1999). https://doi.org/10.1016/S0167-6377(99)00056-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Correa, J.R., Schulz, A.S.: Single-machine scheduling with precedence constraints. Math. Oper. Res. 30(4), 1005–1021 (2005). https://doi.org/10.1287/moor.1050.0158

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM (2014). https://doi.org/10.1145/2591796.2591884

  13. Erlebach, T., Kääb, V., Möhring, R.H.: Scheduling AND/OR-networks on identical parallel machines. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 123–136. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6_10

    Chapter  MATH  Google Scholar 

  14. Feige, U., Lovász, L., Tetali, P.: Approximating min-sum set cover. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 94–107. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45753-4_10

    Chapter  Google Scholar 

  15. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004). https://doi.org/10.1007/s00453-004-1110-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Goemans, M.X.: Cited as personal communication in [35] (1996)

    Google Scholar 

  17. Goemans, M.X., Queyranne, M., Schulz, A.S., Skutella, M., Wang, Y.: Single machine scheduling with release dates. SIAM J. Discrete Math. 15(2), 165–192 (2002). https://doi.org/10.1137/S089548019936223X

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Annals of Discrete Mathematics, vol. 5, pp. 287–326. Elsevier (1979). https://doi.org/10.1016/S0167-5060(08)70356-X

    Google Scholar 

  19. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line approximation algorithms. Math. Oper. Res. 22(3), 513–544 (1997). https://doi.org/10.1287/moor.22.3.513

    Article  MathSciNet  MATH  Google Scholar 

  20. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line algorithms. In: Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 142–151. SIAM (1996)

    Google Scholar 

  21. Happach, F.: Makespan minimization with OR-precedence constraints. arXiv preprint arXiv:1907.08111 (2019)

  22. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982). https://doi.org/10.1137/0211045

    Article  MathSciNet  MATH  Google Scholar 

  23. Im, S., Sviridenko, M., van der Zwaan, R.: Preemptive and non-preemptive generalized min sum set cover. Math. Program. 145(1–2), 377–401 (2014). https://doi.org/10.1007/s10107-013-0651-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Johannes, B.: On the complexity of scheduling unit-time jobs with OR-precedence constraints. Oper. Res. Lett. 33(6), 587–596 (2005). https://doi.org/10.1016/j.orl.2004.11.009

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974). https://doi.org/10.1016/S0022-0000(74)80044-9

    Article  MathSciNet  MATH  Google Scholar 

  26. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 767–775. ACM (2002). https://doi.org/10.1145/509907.510017

  27. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence constraints. Oper. Res. 26(1), 22–35 (1978). https://doi.org/10.1287/opre.26.1.22

    Article  MathSciNet  Google Scholar 

  28. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383–390 (1975). https://doi.org/10.1016/0012-365X(75)90058-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows, and a precedence constrained single-machine scheduling problem. Oper. Res. 51(6), 981–992 (2003). https://doi.org/10.1287/opre.51.6.981.24912

    Article  MathSciNet  MATH  Google Scholar 

  30. McClintock, J., Mestre, J., Wirth, A.: Precedence-constrained min sum set cover. In: 28th International Symposium on Algorithms and Computation. Leibniz International Proceedings in Informatics (LIPIcs), vol. 92, pp. 55:1–55:12 (2017). https://doi.org/10.4230/LIPIcs.ISAAC.2017.55

  31. Munagala, K., Babu, S., Motwani, R., Widom, J.: The pipelined set cover problem. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 83–98. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30570-5_6

    Chapter  Google Scholar 

  32. Potts, C.N.: An algorithm for the single machine sequencing problem with precedence constraints. Math. Program. Study 13, 78–87 (1980)

    Article  MathSciNet  Google Scholar 

  33. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program. 58(1–3), 263–285 (1993). https://doi.org/10.1007/BF01581271

    Article  MathSciNet  MATH  Google Scholar 

  34. Schulz, A.S.: Scheduling to minimize total weighted completion time: performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61310-2_23

    Chapter  Google Scholar 

  35. Schulz, A.S., Skutella, M.: Random-based scheduling new approximations and LP lower bounds. In: Rolim, J. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 119–133. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63248-4_11

    Chapter  Google Scholar 

  36. Sidney, J.B.: Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs. Oper. Res. 23(2), 283–298 (1975). https://doi.org/10.1287/opre.23.2.283

    Article  MathSciNet  MATH  Google Scholar 

  37. Skutella, M., Williamson, D.P.: A note on the generalized min-sum set cover problem. Oper. Res. Lett. 39(6), 433–436 (2011). https://doi.org/10.1016/j.orl.2011.08.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Logist. Q. 3(1–2), 59–66 (1956). https://doi.org/10.1002/nav.3800030106

    Article  MathSciNet  Google Scholar 

  39. Sousa, J.P., Wolsey, L.A.: A time indexed formulation of non-preemptive single machine scheduling problems. Math. Program. 54(1–3), 353–367 (1992). https://doi.org/10.1007/BF01586059

    Article  MATH  Google Scholar 

  40. Woeginger, G.J.: On the approximability of average completion time scheduling under precedence constraints. Discrete Appl. Math. 131(1), 237–252 (2003). https://doi.org/10.1016/S0166-218X(02)00427-4

    Article  MathSciNet  MATH  Google Scholar 

  41. Wolsey, L.A.: Mixed integer programming formulations for production planning and scheduling problems. Invited Talk at the 12th International Symposium on Mathematical Programming (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Happach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Happach, F., Schulz, A.S. (2020). Precedence-Constrained Scheduling and Min-Sum Set Cover. In: Bampis, E., Megow, N. (eds) Approximation and Online Algorithms. WAOA 2019. Lecture Notes in Computer Science(), vol 11926. Springer, Cham. https://doi.org/10.1007/978-3-030-39479-0_12

Download citation

Publish with us

Policies and ethics