Skip to main content

Streaming Algorithms for Bin Packing and Vector Scheduling

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11926))

Included in the following conference series:

  • 626 Accesses

Abstract

Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value.

We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For Bin Packing, we provide a streaming asymptotic \(1+\varepsilon \)-approximation with \(\widetilde{\mathcal {O}}\left( \frac{1}{\varepsilon }\right) \) memory, where \(\widetilde{\mathcal {O}}\) hides logarithmic factors. Moreover, such a space bound is essentially optimal. Our algorithm implies a streaming \(d+\varepsilon \)-approximation for Vector Bin Packing in d dimensions, running in space \(\widetilde{\mathcal {O}}\left( \frac{d}{\varepsilon }\right) \). For the related Vector Scheduling problem, we show how to construct an input summary in space \(\widetilde{\mathcal {O}}(d^2\cdot m / \varepsilon ^2)\) that preserves the optimum value up to a factor of \(2 - \frac{1}{m} +\varepsilon \), where m is the number of identical machines.

The work is supported by European Research Council grant ERC-2014-CoG 647557.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We remark that some online algorithms can be implemented in the streaming model, as described in Sect. 2.1, but they give worse approximation guarantees.

  2. 2.

    Unlike for Bin Packing, an additive constant or even an additive \(o(\textsf {OPT})\) term does not help in the definition of the approximation ratio, since we can scale every number on input by any \(\alpha > 0\) and \(\textsf {OPT} \) scales by \(\alpha \) as well.

  3. 3.

    Note that if s appears more times in the stream, its rank is an interval rather than a single number. Also, unlike in [25], we order numbers non-increasingly, which is more convenient for Bin Packing.

  4. 4.

    More precisely, valid lower and upper bounds on the rank of \(s_i\) can be computed easily from the set of tuples.

References

  1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473 (1999)

    Article  MathSciNet  Google Scholar 

  2. Applegate, D., Buriol, L.S., Dillard, B.L., Johnson, D.S., Shor, P.W.: The cutting-stock approach to bin packing: theory and experiments. In: ALENEX, vol. 3, pp. 1–15 (2003)

    Google Scholar 

  3. Azar, Y., Cohen, I.R., Kamara, S., Shepherd, B.: Tight bounds for online vector bin packing. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 961–970. ACM (2013)

    Google Scholar 

  4. Azar, Y., Cohen, I.R., Panigrahi, D.: Randomized algorithms for online vector load balancing. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 980–991. SIAM (2018)

    Chapter  Google Scholar 

  5. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algorithm for online bin packing. In: 26th Annual European Symposium on Algorithms (ESA 2018), LIPIcs, vol. 112, pp. 5:1–5:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  6. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin packing algorithms. Theoret. Comput. Sci. 440–441, 1–13 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bansal, N., Eliáš, M., Khan, A.: Improved approximation for vector bin packing. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 1561–1579. SIAM (2016)

    Google Scholar 

  8. Bansal, N., Oosterwijk, T., Vredeveld, T., van der Zwaan, R.: Approximating vector scheduling: almost matching upper and lower bounds. Algorithmica 76(4), 1077–1096 (2016)

    Article  MathSciNet  Google Scholar 

  9. Batu, T., Berenbrink, P., Sohler, C.: A sublinear-time approximation scheme for bin packing. Theoret. Comput. Sci. 410(47–49), 5082–5092 (2009)

    Article  MathSciNet  Google Scholar 

  10. Beigel, R., Fu, B.: A dense hierarchy of sublinear time approximation schemes for bin packing. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM/FAW -2012. LNCS, vol. 7285, pp. 172–181. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29700-7_16

    Chapter  Google Scholar 

  11. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Comput. 33(4), 837–851 (2004)

    Article  MathSciNet  Google Scholar 

  12. Chen, L., Jansen, K., Zhang, G.: On the optimality of approximation schemes for the classical scheduling problem. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 657–668. SIAM (2014)

    Google Scholar 

  13. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)

    Article  MathSciNet  Google Scholar 

  14. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_35

    Chapter  Google Scholar 

  15. Cormode, G., Veselý, P.: Tight lower bound for comparison-based quantile summaries. arXiv e-prints, page arXiv:1905.03838, May 2019

  16. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), LIPIcs, vol. 20, pp. 538–549. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  17. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + \(\varepsilon \) in linear time. Combinatorica 1(4), 349–355 (1981)

    Article  MathSciNet  Google Scholar 

  18. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Scheduling 3(6), 343–353 (2000)

    Article  MathSciNet  Google Scholar 

  19. Garey, M.R., Graham, R.L., Johnson, D.S., Yao, A.C.-C.: Resource constrained scheduling as generalized bin packing. J. Comb. Theory Ser. A 21(3), 257–298 (1976)

    Article  MathSciNet  Google Scholar 

  20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman, New York (1979)

    Google Scholar 

  21. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Oper. Res. 9(6), 849–859 (1961)

    Article  MathSciNet  Google Scholar 

  22. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem–part II. Oper. Res. 11(6), 863–888 (1963)

    Article  Google Scholar 

  23. Goemans, M.X., Rothvoß, T.: Polynomiality for bin packing with a constant number of item types. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pp. 830–839. SIAM (2014)

    Google Scholar 

  24. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 564–565. SIAM (2000)

    Google Scholar 

  25. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2001, pp. 58–66, November 2001

    Google Scholar 

  26. Harris, D.G., Srinivasan, A.: The Moser-Tardos framework with partial resampling. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013, pp. 469–478, October 2013

    Google Scholar 

  27. Hoberg, R., Rothvoss, T.: A logarithmic additive integrality gap for bin packing. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 2616–2625. SIAM (2017)

    Google Scholar 

  28. Rudin III, J.F.: Improved bounds for the on-line scheduling problem. Ph.D. thesis, The University of Texas at Dallas (2001)

    Google Scholar 

  29. Im, S., Kell, N., Kulkarni, J., Panigrahi, D.: Tight bounds for online vector scheduling. SIAM J. Comput. 48(1), 93–121 (2019)

    Article  MathSciNet  Google Scholar 

  30. Jansen, K., Klein, K.-M., Verschae, J.: Closing the gap for makespan scheduling via sparsification techniques. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), LIPIcs vol. 55, pp. 72:1–72:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  31. Johnson, D.S.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8, 272–314 (1974)

    Article  MathSciNet  Google Scholar 

  32. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp. 312–320, November 1982

    Google Scholar 

  33. Karnin, Z., Lang, K., Liberty, E.: Optimal quantile approximation in streams. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 71–78, October 2016

    Google Scholar 

  34. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985)

    Article  MathSciNet  Google Scholar 

  35. Ge Luo, L., Wang, K.Y., Cormode, G.: Quantiles over data streams: experimental comparisons, new analyses, and further improvements. VLDB J. 25(4), 449–472 (2016)

    Article  Google Scholar 

  36. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014)

    Article  Google Scholar 

  37. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends® Theoret. Comput. Sci. 1(2), 117–236 (2005)

    Google Scholar 

  38. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new aggregation techniques for sensor networks. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, SenSys 2004, pp. 239–249. ACM (2004)

    Google Scholar 

  39. Woeginger, G.J.: There is no asymptotic PTAS for two-dimensional vector packing. Inf. Process. Lett. 64(6), 293–297 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Michael Shekelyan for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Veselý .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cormode, G., Veselý, P. (2020). Streaming Algorithms for Bin Packing and Vector Scheduling. In: Bampis, E., Megow, N. (eds) Approximation and Online Algorithms. WAOA 2019. Lecture Notes in Computer Science(), vol 11926. Springer, Cham. https://doi.org/10.1007/978-3-030-39479-0_6

Download citation

Publish with us

Policies and ethics