Skip to main content

A Validated Failure Behavior Model for Driver Behavior Models for Generating Skid-Scenarios on Motorways

  • Conference paper
  • First Online:
Intelligent Human Systems Integration 2020 (IHSI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1131))

Included in the following conference series:

  • 4561 Accesses

Abstract

The automation of the driving task will gain importance in future mobility solutions for private transport. However, the sufficient validation of automated driving functions poses enormous challenges for academia and industry. This contribution proposes a failure behavior model for driver models for generating skid-scenarios on motorways. The model is based on results of the five-step-method provided by accident researchers. The failure behavior model is implemented using a neural network, which is trained utilizing a reinforcement learning algorithm. Hereby, the aim of the neuronal network is to maximize the vehicle’s side slip angle to initiate skidding of the vehicle. Concluding, the failure behavior model is validated by reconstructing a real accident in a traffic simulation using the failure behavior model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Audi Accident Research Unit (AARU): https://www.aaru.de/.

  2. 2.

    Human Factors Consult (HFC): https://human-factors-consult.de/en/.

References

  1. McKinsey & Company: Automotive revolution – perspective towards 2030: How the convergence of disruptive technology-driven trends could transform the auto industry. Report, Advanced Industries (2016)

    Google Scholar 

  2. Singh, S.: Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Report, Traffic Safety Facts – Crash (2015)

    Google Scholar 

  3. Ardelt, M., Coester, C., Kaempchen, N.: Highly automated driving on freeways in real traffic using a probabilistic framework. In: 2012 IEEE Intelligent Transportation Systems (ITSC), pp. 1576–1585 (2012)

    Google Scholar 

  4. Bergenhem, C., Johansson, R., Soederberg, A., Nilsson, J., Tryggvesson, J., Toerngrne, S., Ursing, S.: How to reach complete safety requirement refinement for autonomous vehicles. In: CARS 2015 – Critical Automotive Applications (2015)

    Google Scholar 

  5. Winner, H., Wachenfeld, W., Junietz, P.: Validation and introduction of automated driving. In: Winner, H., Prokop, G., Maurer, M. (eds.) Automotive Systems Engineering II, pp. 177–196. Springer, Cham (2018)

    Chapter  Google Scholar 

  6. Shokry, H., Hinchey, M.: Model-based verification of embedded software (2009)

    Google Scholar 

  7. Ulbrich, S., Schuldt, F., Homeier, K., Steinhoff, M., Menzel, T., Krause, J., Maurer, M.: Testing and validating tactical lane change behavior planning for automated driving. In: Watzenig, D., Horn, M. (eds.) Automated Driving, pp. 451–471. Springer, Cham (2017)

    Google Scholar 

  8. Schuldt, F., Reschka, A., Maurer, M.: A method for an efficient, systematic test case generation for advanced driver assistance systems in virtual environments. In: Winner, H., Prokop, G., Mauerer, M. (eds.) Automotive Systems Engineering II, pp. 147–175. Springer, Cham (2017)

    Google Scholar 

  9. Menzel, T., Bagschick, G., Isensee, L., Schomburg, A., Maurer, M.: From functional to logical scenarios: detailing a keyword-based scenario description for execution in a simulation environment. Technical report, IEEE Intelligent Vehicles Symposium (2019)

    Google Scholar 

  10. Michon, J.A.: A critical view of driver behavior models: what do we know, what should we do? In: Evans, L., Schwing, R.C. (eds.) Human Behavior and Traffic Safety, pp. 485–524. Springer, Boston (1985)

    Chapter  Google Scholar 

  11. Huber, B., Sippl, C., German, R., Djanatliev, A.: A validated failure behavior model for driver models to test automated driving functions. In: Ahram, T., Taiar, R., Colson, S., Choplin, A. (eds.) Human Interaction and Emerging Technologies, IHIET 2019. Advances in Intelligent Systems and Computing, vol. 1018, Springer, Cham (2020)

    Google Scholar 

  12. Weber, S., Ernstberger, A., Donner, E., Kiss, M.: Learning from accidents: using technical and subjective information to identify accident mechanisms and to develop driver assistance systems. In: Dorn, L., Sullman, M. (eds.) Driver Behaviour and Training, vol. VI, pp. 223–230. Ashgate, Surrey (2013)

    Google Scholar 

  13. Winkle, T.: Safety benefits of automated vehicles: extended findings from accident research for development, validation and testing. In: Maurer, M., Gerdes, J., Lenz, B., Winner, H. (eds.) Autonomous Driving. Springer, Heidelberg (2016)

    Google Scholar 

  14. Human Factor Consult Driver Modeling. https://human-factors-consult.de/en/services-and-products/driver-modeling/

  15. Schramm, D., Hiller, M., Bardini, R.: Zweispurmodelle. In: Modellbildung und Simulation der Dynamik von Kraftfahrzeugen. Springer, Heidelberg (2018)

    Google Scholar 

  16. Schulmann, J., Wolksi, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  17. Von Vietinghoff, A.: Nichtlineare Regelung von Kraftfahrzeugen in querdynamischen Fahrsituationen. Insitut fuer Industrielle Informationstechnik (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huber, B., Schmidl, P., Sippl, C., Djanatliev, A. (2020). A Validated Failure Behavior Model for Driver Behavior Models for Generating Skid-Scenarios on Motorways. In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds) Intelligent Human Systems Integration 2020. IHSI 2020. Advances in Intelligent Systems and Computing, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-39512-4_15

Download citation

Publish with us

Policies and ethics